Linear-algebraic λ-calculus: higher-order, encodings, and confluence.

  • Pablo Arrighi
  • Gilles Dowek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5117)

Abstract

We introduce a minimal language combining higher-order computation and linear algebra. This language extends the λ-calculus with the possibility to make arbitrary linear combinations of terms α.t + β.u. We describe how to “execute” this language in terms of a few rewrite rules, and justify them through the two fundamental requirements that the language be a language of linear operators, and that it be higher-order. We mention the perspectives of this work in the field of quantum computation, whose circuits we show can be easily encoded in the calculus. Finally we prove the confluence of the calculus, this is our main result.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols LICS. IEEE Computer Society, 415–425 (2004)Google Scholar
  2. 2.
    Altenkirch, T., Grattage, J., Vizzotto, J.K., Sabry, A.: An Algebra of Pure Quantum Programming. In: Third International Workshop on Quantum Programming Languages. Electronic Notes of Theoretical Computer Science, vol. 170C, pp. 23–47 (2007)Google Scholar
  3. 3.
    Arrighi, P., Dowek, G.: A computational definition of the notion of vectorial space. ENTCS 117, 249–261 (2005)Google Scholar
  4. 4.
    Arrighi, P., Dowek, G.: Linear-algebraic lambda-calculus. In: Selinger, P. (ed.) International workshop on quantum programming languages, Turku Centre for Computer Science General Publication, vol. 33, pp. 21–38 (2004)Google Scholar
  5. 5.
    Arrighi, P., Dowek, G.: Linear-algebraic lambda-calculus: higher-order, encodings, confluence, arXiv:quant-ph/0612199.Google Scholar
  6. 6.
    Bernstein, E., Vazirani, U.: Quantum Complexity Theory. In: Annual ACM symposium on Theory of Computing, vol. 25 (1993)Google Scholar
  7. 7.
    Boudol, G.: Lambda-calculi for (strict) parallel functions. Information and Computation 108(1), 51–127 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bournez, O., Hoyrup, M.: Rewriting Logic and Probabilities. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Boykin, P., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: On universal and fault-taulerant quantum computing, arxiv:quant-ph/9906054Google Scholar
  10. 10.
  11. 11.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of theoretical computer science. formal models and semantics, vol. B. MIT press, Cambridge (1991)Google Scholar
  12. 12.
    Deutsch, D., Josza, R.: Rapid solution of problems by quantum computation. Proc. of the Roy. Soc. of London A 439, 553–558 (1992)MATHCrossRefGoogle Scholar
  13. 13.
    Dougherty, D.: Adding Algebraic Rewriting to the Untyped Lambda Calculus. In: Proc. of the Fourth International Conference on Rewriting Techniques and Applications (1992)Google Scholar
  14. 14.
    Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer Science 309, 1–41 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic λ-calculus and quantitative program analysis. J. of Logic and Computation 15(2), 159–179 (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Grover, L.K.: Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)CrossRefGoogle Scholar
  18. 18.
    Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous pi-calculus. In: Tiuryn, J. (ed.) ETAPS 2000 and FOSSACS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Jouannaud, J.-P., Kirchner, H.: Completion of a Set of Rules Modulo a Set of Equations. SIAM J. of Computing 15(14), 1155–1194Google Scholar
  20. 20.
    Newman, M.H.A.: On theories with a combinatorial definition of ”equivalence”. Annals of Mathematics 432, 223–243 (1942)CrossRefGoogle Scholar
  21. 21.
    Nielsen, M.A.: Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state. Phys. Rev. A 308, 96–100 (2003)MATHGoogle Scholar
  22. 22.
    Peterson, G.E., Stickel, M.E.: Complete Sets of Reductions for Some Equational Theories. J. ACM 28(2), 233–264 (1981)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Perdrix, S.: State transfer instead of teleportation in measurement-based quantum computation. Int. J. of Quantum Information 1(1), 219–223 (2005)CrossRefGoogle Scholar
  24. 24.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: The one-way quantum computer - a non-network model of quantum computation. Journal of Modern Optics 49, 1299 (2002)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Selinger, P.: Towards a quantum programming language. Math. Struc. in Computer Science 14(4), 527–586 (2004)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Math. Struc. in Computer Science 16(3), 527–552 (2006)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. on Computing 26, 1484–1509 (1997)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Van Tonder, A.: A Lambda Calculus for Quantum Computation, arXiv:quant-ph/0307150 (July 2003)Google Scholar
  29. 29.
    Vaux, L.: On linear combinations of lambda-terms. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 374–388. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Wooters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pablo Arrighi
    • 1
  • Gilles Dowek
    • 2
  1. 1.Université de Grenoble and IMAG LaboratoriesGrenoble CedexFrance
  2. 2.École polytechnique and INRIA, LIXPalaiseau CedexFrance

Personalised recommendations