Functional-Logic Graph Parser Combinators

  • Steffen Mazanek
  • Mark Minas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5117)


Parser combinators are a popular technique among functional programmers for writing parsers. They allow the definition of parsers for string languages in a manner quite similar to BNF rules. In recent papers we have shown that the combinator approach is also beneficial for graph parsing. However, we have noted as well that certain graph languages are difficult to describe in a purely functional way.

In this paper we demonstrate that functional-logic languages can be used to conveniently implement graph parsers. Therefore, we provide a direct mapping from hyperedge replacement grammars to graph parsers. As in the string setting, our combinators closely reflect the building blocks of this grammar formalism. Finally, we show by example that our framework is strictly more powerful than hyperedge replacement grammars.

We make heavy use of key features of both the functional and the logic programming approach: Higher-order functions allow the treatment of parsers as first class citizens. Non-determinism and logical variables are beneficial for dealing with errors and incomplete information. Parsers can even be applied backwards and thus be used as generators or for graph completion.


Free Variable Graph Transformation Linear Logic Derivation Tree Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hutton, G.: Higher-order functions for parsing. Journal of Functional Programming 2(3), 323–343 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Fokker, J.: Functional parsers. In: Advanced Functional Programming, First Intl. Spring School on Advanced Functional Programming Techniques-Tutorial Text, London, UK, pp. 1–23. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Mazanek, S., Minas, M.: Graph parser combinators. In: Proc. of 19th Intl. Symp. on the Impl. and Appl. of Functional Languages. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Mazanek, S., Minas, M.: Parsing of hyperedge replacement grammars with graph parser combinators. In: Proc. of 7th Intl. Workshop on Graph Transf. and Visual Modeling Techniques. Electronic Communications of the EASST (to appear, 2008)Google Scholar
  5. 5.
    Minas, M.: Concepts and realization of a diagram editor generator based on hypergraph transformation. Science of Computer Programming 44(2), 157–180 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. I, pp. 95–162. World Scientific, Singapore (1997)Google Scholar
  7. 7.
    Tanaka, T.: Definite-clause set grammars: a formalism for problem solving. J. Log. Program. 10(1), 1–17 (1991)CrossRefGoogle Scholar
  8. 8.
    Hanus, M.: Multi-paradigm declarative languages. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Caballero, R., López-Fraguas, F.J.: A functional-logic perspective of parsing. In: Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 85–99. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Lautemann, C.: The complexity of graph languages generated by hyperedge replacement. Acta Inf. 27(5), 399–421 (1989)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4), 776–822 (2000)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Swierstra, S.D., Azero Alcocer, P.R.: Fast, error correcting parser combinators: a short tutorial. In: Pavelka, J., Tel, G., Bartosek, M. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 111–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Antoy, S., Hanus, M.: Functional logic design patterns. In: Proc. of the 6th Intl. Symposium on Functional and Logic Programming. LNCS, vol. 2441, pp. 67–87. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Hutton, G., Meijer, E.: Monadic parser combinators. Technical Report NOTTCS-TR-96-4, Department of Computer Science, University of Nottingham (1996)Google Scholar
  15. 15.
    Seifert, S., Fischer, I.: Parsing string generating hypergraph grammars. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 352–367. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Habel, A., Kreowski, H.J.: Pretty patterns produced by hyperedge replacement. In: Göttler, H., Schneider, H.-J. (eds.) WG 1987. LNCS, vol. 314, pp. 32–45. Springer, Heidelberg (1988)Google Scholar
  17. 17.
    Taentzer, G., et al.: Generation of sierpinski triangles: A case study for graph transformation tools. In: Proc. of AGTIVE 2007. LNCS. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Bottoni, P., Meyer, B., Marriott, K., Parisi-Presicce, F.: Deductive parsing of visual languages. In: Proc. of the 4th Intl. Conference on Logical Aspects of Computational Linguistics, London, UK, pp. 79–94. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Inf. Comput. 110(2), 327–365 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Costagliola, G., Lucia, A.D., Orefice, S., Tortora, G.: A parsing methodology for the implementation of visual systems. IEEE Trans. Softw. Eng. 23(12), 777–799 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Steffen Mazanek
    • 1
  • Mark Minas
    • 1
  1. 1.Universität der BundeswehrMünchenGermany

Personalised recommendations