Arctic Termination ...Below Zero

  • Adam Koprowski
  • Johannes Waldmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5117)


We introduce the arctic matrix method for automatically proving termination of term rewriting. We use vectors and matrices over the arctic semi-ring: natural numbers extended with -∞,with the operations ”max” and ”plus”. This extends the matrix method for term rewriting and the arctic matrix method for string rewriting. In combination with the Dependency Pairs transformation, this allows for some conceptually simple termination proofs in cases where only much more involved proofs were known before. We further generalize to arctic numbers ”below zero”: integers extended with -∞.This allows to treat some termination problems with symbols that require a predecessor semantics. The contents of the paper has been formally verified in the Coq proof assistant and the formalization has been contributed to the CoLoR library of certified termination techniques. This allows formal verification of termination proofs using the arctic matrix method. We also report on experiments with an implementation of this method which, compared to results from 2007, outperforms TPA (winner of the certified termination competition for term rewriting), and in the string rewriting category is as powerful as Matchbox was but now all of the proofs are certified.


Function Symbol Termination Problem Termination Proof Dependency Pair Derivational Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amadio, R.M.: Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae 65(1-2), 29–60 (2005)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS 236(1-2), 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  4. 4.
    Blanqui, F., Delobel, W., Coupet-Grimal, S., Hinderer, S., Koprowski, A.: CoLoR, a Coq library on rewriting and termination. In: WST (2006),
  5. 5.
    Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Endrullis, J.: Jambox,
  7. 7.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. Journal of Automated Reasoning (to appear, 2007)Google Scholar
  8. 8.
    Fuchs, L.: Partially Ordered Algebraic Systems. Addison-Wesley, Reading (1962)Google Scholar
  9. 9.
    Gaubert, S., Plus, M.: Methods and applications of (max, +) linear algebra. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 261–282. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Giesl, J., Arts, T., Ohlebusch, E.: Modular termination proofs for rewriting using dependency pairs. Journal of Symbolic Computation 34(1), 21–58 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 210–220. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Giesl, J., Thiemann, R., Swiderski, S., Schneider-Kamp, P.: Proving termination by bounded increase. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 443–459. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Golan, J.S.: Semirings and their Applications. Kluwer, Dordrecht (1999)zbMATHGoogle Scholar
  14. 14.
    Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: Buchberger, B., Campbell, J.A. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 185–198. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg (1989)Google Scholar
  17. 17.
    Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Koprowski, A.: TPA: Termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006), CrossRefGoogle Scholar
  19. 19.
    Koprowski, A., Zantema, H.: Certification of proving termination of term rewriting by matrix interpretations. In: SOFSEM. LNCS, vol. 4910, pp. 328–339 (2008)Google Scholar
  20. 20.
    Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 101–112. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004), Google Scholar
  22. 22.
    Waldmann, J.: Arctic termination. In: WST (2007)Google Scholar
  23. 23.
    Waldmann, J.: Weighted automata for proving termination of string rewriting. Journal of Automata, Languages and Combinatorics (to appear, 2007)Google Scholar
  24. 24.
    Zantema, H., Waldmann, J.: Termination by quasi-periodic interpretations. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 404–418. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    The Coq proof assistant,
  26. 26.
  27. 27.
    Termination problems data base,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Adam Koprowski
    • 1
  • Johannes Waldmann
    • 2
  1. 1.Department of Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Hochschule für Technik, Wirtschaft und Kultur (FH) LeipzigLeipzigGermany

Personalised recommendations