Modular Termination of Basic Narrowing

  • María Alpuente
  • Santiago Escobar
  • José Iborra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5117)

Abstract

Basic narrowing is a restricted form of narrowing which constrains narrowing steps to a set of non-blocked (or basic) positions. Basic narrowing has a number of important applications including equational unification in canonical theories. Another application is analyzing termination of narrowing by checking the termination of basic narrowing, as done in pioneering work by Hullot. In this work, we study the modularity of termination of basic narrowing in hierarchical combinations of TRSs, including a generalization of proper extensions with shared subsystem. This provides new algorithmic criteria to prove termination of basic narrowing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpuente, M., Escobar, S., Iborra, J.: Modular termination of basic narrowing. Technical Report DSIC-II/04/08, Universidad Politécnica de Valencia (2007)Google Scholar
  2. 2.
    Alpuente, M., Escobar, S., Iborra, J.: Termination of Narrowing revisited. Theoretical Computer Science (to appear, 2008)Google Scholar
  3. 3.
    Alpuente, M., Falaschi, M., Gabbrielli, M., Levi, G.: The semantics of equational logic programming as an instance of CLP. In: Logic Programming Languages, pp. 49–81. The MIT Press, Cambridge (1993)Google Scholar
  4. 4.
    Alpuente, M., Falaschi, M., Levi, G.: Incremental Constraint Satisfaction for Equational Logic Programming. Theoretical Computer Science 142(1), 27–57 (1995)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1-2), 133–178 (2000)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Bachmair, L., Dershowitz, N.: Commutation, transformation, and termination. In: Proc. of the 8th Int’l Conf. on Automated Deduction, January 1986, pp. 5–20 (1986)Google Scholar
  7. 7.
    Comon-Lundh, H.: Intruder Theories (Ongoing Work). In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 1–4. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Cortier, V., Delaune, S., Lafourcade, P.: A Survey of Algebraic Properties used in Cryptographic Protocols. Journal of Computer Security 14(1), 1–43 (2006)Google Scholar
  9. 9.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical Computer Science, vol. B, pp. 244–320. Elsevier Science, Amsterdam (1990)Google Scholar
  10. 10.
    Escobar, S., Meadows, C., Meseguer, J.: A Rewriting-Based Inference System for the NRL Protocol Analyzer and its Meta-Logical Properties. TCS 367 (2006)Google Scholar
  11. 11.
    Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Fay, M.: First-Order Unification in an Equational Theory. In: Fourth Int’l Conf. on Automated Deduction, pp. 161–167 (1979)Google Scholar
  13. 13.
    Hanus, M.: The Integration of Functions into Logic Programming: From Theory to Practice. Journal of Logic Programming 19&20, 583–628 (1994)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hölldobler, S. (ed.): Foundations of Equational Logic Programming. LNCS, vol. 353. Springer, Heidelberg (1989)MATHGoogle Scholar
  15. 15.
    Hullot, J.-M.: Canonical Forms and Unification. In: Bibel, W. (ed.) CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)Google Scholar
  16. 16.
    Hullot, J.-M.: Compilation de Formes Canoniques dans les Théories q́uationelles. Thése de Doctorat de Troisième Cycle. PhD thesis, Université de Paris Sud, Orsay (France) (1981)Google Scholar
  17. 17.
    Meseguer, J.: Multiparadigm logic programming. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  18. 18.
    Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. HOSC, 123–160 (2007)Google Scholar
  19. 19.
    Middeldorp, A., Hamoen, E.: Completeness Results for Basic Narrowing. J. of Applicable Algebra in Engineering, Comm. and Computing 5, 313–353 (1994)MathSciNetGoogle Scholar
  20. 20.
    Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)MATHGoogle Scholar
  21. 21.
    Prehofer, C.: On Modularity in Term Rewriting and Narrowing. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, pp. 253–268. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  22. 22.
    Krishna Rao, M.R.K.: Modular proofs for completeness of hierarchical term rewriting systems. Theoretical Computer Science (January 1995)Google Scholar
  23. 23.
    Réty, P.: Improving Basic Narrowing Techniques. In: Lescanne, P. (ed.) RTA 1987. LNCS, vol. 256. Springer, Heidelberg (1987)Google Scholar
  24. 24.
    TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Google Scholar
  25. 25.
    Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Inf. Process. Lett. 25(3), 141–143 (1987)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Urbain, X.: Modular & incremental automated termination proofs. Int. J. Approx. Reasoning 32(4), 315–355 (2004)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • María Alpuente
    • 1
  • Santiago Escobar
    • 1
  • José Iborra
    • 1
  1. 1.Universidad Politécnica de ValenciaSpain

Personalised recommendations