Robust Multi-property Combiners for Hash Functions Revisited

  • Marc Fischlin
  • Anja Lehmann
  • Krzysztof Pietrzak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5126)

Abstract

A robust multi-property combiner for a set of security properties merges two hash functions such that the resulting function satisfies each of the properties which at least one of the two starting functions has. Fischlin and Lehmann (TCC 2008) recently constructed a combiner which simultaneously preserves collision-resistance, target collision-resistance, message authentication, pseudorandomness and indifferentiability from a random oracle (IRO). Their combiner produces outputs of 5n bits, where n denotes the output length of the underlying hash functions.

In this paper we propose improved combiners with shorter outputs. By sacrificing the indifferentiability from random oracles we obtain a combiner which preserves all of the other aforementioned properties but with output length 2n only. This matches a lower bound for black-box combiners for collision-resistance as the only property, showing that the other properties can be achieved without penalizing the length of the hash values. We then propose a combiner which also preserves the IRO property, slightly increasing the output length to 2n + ω(logn). Finally, we show that a twist on our combiners also makes them robust for one-wayness (but at the price of a fixed input length).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision resistant hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 570–583. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing 17(2), 373–386 (1988)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Pietrzak, K.: Non-trivial black-box combiners for collision-resistant hash-functions don’t exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marc Fischlin
    • 1
  • Anja Lehmann
    • 1
  • Krzysztof Pietrzak
    • 2
  1. 1.Darmstadt University of TechnologyGermany
  2. 2.CWIAmsterdamNetherlands

Personalised recommendations