Advertisement

Improved Garbled Circuit: Free XOR Gates and Applications

  • Vladimir Kolesnikov
  • Thomas Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5126)

Abstract

We present a new garbled circuit construction for two-party secure function evaluation (SFE). In our one-round protocol, XOR gates are evaluated “for free”, which results in the corresponding improvement over the best garbled circuit implementations (e.g. Fairplay [19]).

We build permutation networks [26] and Universal Circuits (UC) [25] almost exclusively of XOR gates; this results in a factor of up to 4 improvement (in both computation and communication) of their SFE. We also improve integer addition and equality testing by factor of up to 2.

We rely on the Random Oracle (RO) assumption. Our constructions are proven secure in the semi-honest model.

Keywords

Random Oracle Full Adder Random Oracle Model Oblivious Transfer Output Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS, pp. 62–73 (1993)Google Scholar
  4. 4.
    Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing encrypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 206–220. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proc. 30th ACM Symp. on Theory of Computing, pp. 209–218 (1998)Google Scholar
  6. 6.
    Crescenzo, G.D.: Private selective payment protocols. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg (1988)Google Scholar
  10. 10.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. In: ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD 2002) (2002)Google Scholar
  13. 13.
    Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th ACM Symp. on Theory of Computing, Chicago, pp. 20–31. ACM, New York (1988)Google Scholar
  14. 14.
    Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Financial Cryptography and Data Security, FC 2008. LNCS. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation. Cryptology ePrint Archive, Report 2004/175 (2004)Google Scholar
  18. 18.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computation system. In: USENIX (2004)Google Scholar
  20. 20.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (2001)Google Scholar
  21. 21.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: 1st ACM Conf. on Electronic Commerce (1999)Google Scholar
  22. 22.
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD Explor. Newsl. 4(2), 12–19 (2002)CrossRefGoogle Scholar
  24. 24.
    Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC 1. In: Proc. 40th FOCS, New York, pp. 554–566. IEEE, Los Alamitos (1999)Google Scholar
  25. 25.
    Valiant, L.G.: Universal circuits (preliminary report). In: Proc. 8th ACM Symp. on Theory of Computing, pp. 196–203. ACM Press, New York (1976)Google Scholar
  26. 26.
    Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)CrossRefGoogle Scholar
  27. 27.
    Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE Symp. on Foundations of Comp. Science, Chicago, pp. 160–164. IEEE, Los Alamitos (1982)Google Scholar
  28. 28.
    Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th IEEE Symp. on Foundations of Comp. Science, Toronto, pp. 162–167. IEEE, Los Alamitos (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vladimir Kolesnikov
    • 1
  • Thomas Schneider
    • 2
  1. 1.Bell LaboratoriesUSA
  2. 2.Horst Görtz Institute for IT-SecurityRuhr-University BochumGermany

Personalised recommendations