Finite Automata, Digraph Connectivity, and Regular Expression Size

(Extended Abstract)
  • Hermann Gruber
  • Markus Holzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5126)


Recently lower bounds on the minimum required size for the conversion of deterministic finite automata into regular expressions and on the required size of regular expressions resulting from applying some basic language operations on them, were given by Gelade and Neven [8]. We strengthen and extend these results, obtaining lower bounds that are in part optimal, and, notably, the presented examples are over a binary alphabet, which is best possible. To this end, we develop a different, more versatile lower bound technique that is based on the star height of regular languages. It is known that for a restricted class of regular languages, the star height can be determined from the digraph underlying the transition structure of the minimal finite automaton accepting that language. In this way, star height is tied to cycle rank, a structural complexity measure for digraphs proposed by Eggan and Büchi, which measures the degree of connectivity of directed graphs.


Undirected Graph Regular Expression Regular Language Finite Automaton Alphabet Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Berwanger, D., Grädel, E.: Entanglement—A measure for the complexity of directed graphs with applications to logic and games. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths and cycles. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 222–233. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Book, R.V., Chandra, A.K.: Inherently nonplanar automata. Acta Informatica 6, 89–94 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Eggan, L.C.: Transition graphs and the star height of regular events. Michigan Mathematical Journal 10, 385–397 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Zeiger, H.P.: Complexity measures for regular expressions. Journal of Computer and System Sciences 12(2), 134–146 (1976)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: New results and open problems. Journal of Automata, Languages and Combinatorics 10(4), 407–437 (2005)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular expressions. In: Albers, S., Weil, P. (eds.) Symposium on Theoretical Aspects of Computer Science. Dagstuhl Seminar Proceedings, vol. 08001, pp. 325–336. IBFI (2008)Google Scholar
  9. 9.
    Gruber, H., Holzer, M.: Finite automata, digraph connectivity and regular expression size. Technical report, Technische Universität München (December 2007)Google Scholar
  10. 10.
    Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using communication complexity. In: Amadio, R. (ed.) Foundations of Software Science and Computation Structures. LNCS, vol. 4962, pp. 273–286. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Hashiguchi, K.: Algorithms for determining relative star height and star height. Information and Computation 78(2), 124–169 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  13. 13.
    Ilie, L., Yu, S.: Follow automata. Information and Computation 186(1), 140–162 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Combinatorial Theory, Series B 82(1), 138–154 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kirsten, D.: Distance desert automata and the star height problem. RAIRO – Theoretical Informatics and Applications 39(3), 455–509 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies. Annals of Mathematics Studies, pp. 3–42. Princeton University Press, Princeton (1956)Google Scholar
  17. 17.
    Mayer, A.J., Stockmeyer, L.J.: Word problems – This time with interleaving. Information and Computation 115(2), 293–311 (1994)CrossRefMathSciNetGoogle Scholar
  18. 18.
    McNaughton, R.: The loop complexity of pure-group events. Information and Control 11(1/2), 167–176 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    McNaughton, R.: The loop complexity of regular events. Information Sciences 1, 305–328 (1969)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Morris, P.H., Gray, R.A., Filman, R.E.: Goto removal based on regular expressions. Journal of Software Maintenance 9(1), 47–66 (1997)CrossRefGoogle Scholar
  21. 21.
    Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds. European Journal of Combinatorics 27(6), 1022–1041 (2006)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Obdržálek, J.: Dag-width: Connectivity measure for directed graphs. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 814–821. ACM Press, New York (2006)CrossRefGoogle Scholar
  23. 23.
    Pinsker, M.S.: On the complexity of a concentrator. In: Annual Teletraffic Conference, pp. 318/1–318/4 (1973)Google Scholar
  24. 24.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7(3), 309–322 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sakarovitch, J.: The language, the expression, and the (small) automaton. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 15–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Schnitger, G.: Regular expressions and NFAs without ε-transitions. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 432–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hermann Gruber
    • 1
  • Markus Holzer
    • 2
  1. 1.Institut für InformatikLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Institut für InformatikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations