Asynchronous Multi-Party Computation with Quadratic Communication

  • Martin Hirt
  • Jesper Buus Nielsen
  • Bartosz Przydatek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5126)


We present an efficient protocol for secure multi-party computation in the asynchronous model with optimal resilience. For n parties, up to t < n/3 of them being corrupted, and security parameter κ, a circuit with c gates can be securely computed with communication complexity \(\O(c n^2 \kappa)\) bits, which improves on the previously known solutions by a factor of Ω(n). The construction of the protocol follows the approach introduced by Franklin and Haber (Crypto’93), based on a public-key encryption scheme with threshold decryption. To achieve the quadratic complexity, we employ several techniques, including circuit randomization due to Beaver (Crypto’91), and an abstraction of certificates, which can be of independent interest.


Random Oracle Homomorphic Encryption Multiplication Gate Honest Party Byzantine Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. ACM CCS, pp. 62–73 (1993)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The exact security of digital signatures — How to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61 (1993)Google Scholar
  5. 5.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th STOC, pp. 1–10 (1988)Google Scholar
  6. 6.
    Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: Proc. 13th PODC, pp. 183–192 (1994)Google Scholar
  7. 7.
    Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinopole: Practical asynchronous Byzantine agreement using cryptography. In: Proc. 19th PODC, pp. 123–132 (2000)Google Scholar
  8. 8.
    Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute of Science, Rehovot 76100, Israel (June 1995)Google Scholar
  9. 9.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. JoC 13(1), 143–202 (2000)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proc. 30th STOC, pp. 209–218 (1998)Google Scholar
  11. 11.
    Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: Proc. 25th STOC, pp. 42–51 (1993)Google Scholar
  12. 12.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proc. 20th STOC, pp. 11–19 (1988)Google Scholar
  13. 13.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 110–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Proc. Financial Cryptography 2000 (2000)Google Scholar
  17. 17.
    Franklin, M., Haber, S.: Joint encryption and message-efficient secure computation. JoC 9(4), 217–232 (1996); Preliminary version in Proc. CRYPTO 1993Google Scholar
  18. 18.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a completeness theorem for protocols with honest majority. In: Proc. 19th STOC, pp. 218–229 (1987)Google Scholar
  19. 19.
    Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation with optimal resilience (extended abstract). In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic communication (2008),
  21. 21.
    Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Nielsen, J.B.: A threshold pseudorandom function construction and its applications. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 401–416. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  24. 24.
    Prabhu, B., Srinathan, K., Rangan, C.P.: Asynchronous unconditionally secure computation: An efficiency improvement. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 93–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE FOCS, pp. 160–164 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Hirt
    • 1
  • Jesper Buus Nielsen
    • 2
  • Bartosz Przydatek
    • 3
  1. 1.Dept. of Computer ScienceETH ZurichSwitzerland
  2. 2.Dept. of Computer ScienceUniversity of AarhusDenmark
  3. 3.Google SwitzerlandZurichSwitzerland

Personalised recommendations