Advertisement

ATL* Satisfiability Is 2EXPTIME-Complete

  • Sven Schewe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5126)

Abstract

The two central decision problems that arise during the design of safety critical systems are the satisfiability and the model checking problem. While model checking can only be applied after implementing the system, satisfiability checking answers the question whether a system that satisfies the specification exists. Model checking is traditionally considered to be the simpler problem – for branching-time and fixed point logics such as CTL, CTL*, ATL, and the classical and alternating time μ-calculus, the complexity of satisfiability checking is considerably higher than the model checking complexity. We show that ATL* is a notable exception of this rule: Both ATL* model checking and ATL* satisfiability checking are 2EXPTIME-complete.

Keywords

Model Check Explicit Model Atomic Proposition Label Transition System Counter Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolper, P.: Synthesis of Communicating Processes from Temporal-Logic Specifications. PhD thesis, Stanford University (1982)Google Scholar
  2. 2.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Proc. IBM Workshop on Logics of Programs, pp. 52–71. Springer, Heidelberg (1981)Google Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Emerson, E.A.: Temporal and modal logic, pp. 995–1072. MIT Press, Cambridge (1990)Google Scholar
  5. 5.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. Transactions On Programming Languages and Systems 8, 244–263 (1986)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. Journal of the ACM 47, 312–360 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: Atl satisfiability is indeed exptime-complete. Journal of Logic and Computation 16, 765–787 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kremer, S., Raskin, J.F.: A game-based verification of non-repudiation and fair exchange protocols. Journal of Computer Security 11, 399–430 (2003)Google Scholar
  9. 9.
    Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the alternating-time μ-calculus. In: Proc. CSL, pp. 591–605. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Even, S., Yacobi, Y.: Relations among public key signature systems. Technical Report 175, Technion, Haifa, Israel (1980)Google Scholar
  11. 11.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dynamic programs for omega-regular objectives. In: Proc. LICS, pp. 279–290. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  12. 12.
    van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proc. LICS, pp. 208–217. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  13. 13.
    Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull. Soc. Math. Belg. 8 (2001)Google Scholar
  14. 14.
    Kupferman, O., Vardi, M.Y.: Church’s problem revisited. The bulletin of Symbolic Logic 5, 245–263 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wilke, T.: CTL +  is exponentially more succinct than CTL. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 110–121. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on Foundations of Computer Science, Pittsburgh, pp. 531–540 (2005)Google Scholar
  17. 17.
    Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sven Schewe
    • 1
  1. 1.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations