Erratum: Superpolynomial Speedups Based on Almost Any Quantum Circuit

  • Sean Hallgren
  • Aram W. Harrow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5125)


  1. [Aar03]
    Aaronson, S.: Quantum lower bound for recursive Fourier sampling. Quantum Information and Computation 3(2), 165–174 (2003), arXiv:quant-ph/0209060Google Scholar
  2. [AJL06]
    Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the jones polynomial. In: STOC 2006: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 427–436. ACM Press, New York (2006), arXiv:quant-ph/0511096Google Scholar
  3. [BCvD05]
    Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: FOCS 2005: 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 469–478 (2005), arXiv:quant-ph/0504083Google Scholar
  4. [DOP07]
    Dahlsten, O.C.O., Oliveira, R., Plenio, M.B.: Emergence of typical entanglement in two-party random processes. J. Phys. A 40, 8081–8108 (2007), arXiv:quant-ph/0701125Google Scholar
  5. [FvdG99]
    Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quantum mechanical states. IEEE Trans. Inf. Th. 45(4), 1216–1227 (1999), arXiv:quant-ph/9712042Google Scholar
  6. [HH08]
    Hallgren, S., Harrow, A.W.: Superpolynomial speedups based on almost any quantum circuit (2008), arXiv:0805.0007Google Scholar
  7. [HMR+06]
    Hallgren, S., Moore, C., Rötteler, M., Russell, A., Sen, P.: Limitations of quantum coset states for graph isomorphism. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 604–617. ACM Press, New York (2006), arXiv:quant-ph/0511148, arXiv:quant-ph/0612089Google Scholar
  8. [PSW06]
    Popescu, S., Short, A.J., Winter, A.: The foundations of statistical mechanics from entanglement: Individual states vs. averages. Nature 2, 754–758 (2006), arXiv:quant-ph/0511225Google Scholar
  9. [Sho97]
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Siam J. Comp. 26(5), 1484–1509 (1997), arXiv:quant-ph/9508027Google Scholar
  10. [Wat01]
    Watrous, J.: Quantum algorithms for solvable groups. In: STOC 2001: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, Crete, Greece, pp. 60–67. ACM Press, New York (2001), arXiv:quant-ph/0011023Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sean Hallgren
    • 1
  • Aram W. Harrow
    • 2
  1. 1.Department of Computer Science and EngineeringThe Pennsylvania State University
  2. 2.Department of MathematicsUniversity of BristolBristolU.K.

Personalised recommendations