Advertisement

Optimal Quantum Adversary Lower Bounds for Ordered Search

  • Andrew M. Childs
  • Troy Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5125)

Abstract

The goal of the ordered search problem is to find a particular item in an ordered list of n items. Using the adversary method, Høyer, Neerbek, and Shi proved a quantum lower bound for this problem of \(\frac{1}{\pi} \ln n + {\it \Theta}(1)\). Here, we find the exact value of the best possible quantum adversary lower bound for a symmetrized version of ordered search (whose query complexity differs from that of the original problem by at most 1). Thus we show that the best lower bound for ordered search that can be proved by the adversary method is \(\frac{1}{\pi} \ln n + O(1)\). Furthermore, we show that this remains true for the generalized adversary method allowing negative weights.

Keywords

Automorphism Group Query Complexity Spectral Norm Negative Weight Principal Eigenvector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambainis, A.: A better lower bound for quantum algorithms searching an ordered list. In: Proc. 40th FOCS, pp. 352–357 (1999)Google Scholar
  2. 2.
    Ambainis, A.: Quantum lower bounds by quantum arguments. Journal of Computer and System Sciences 64(4), 750–767 (2002); Preliminary version in STOC 2000MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ambainis, A.: Polynomial degree vs. quantum query complexity. Journal of Computer and System Sciences 72(2), 220–238 (2006); Preliminary version in FOCS 2003MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semidefinite programming. In: Proc. 18th CCC, pp. 179–193 (2003)Google Scholar
  5. 5.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. Journal of the ACM 48(4), 778–797 (2001); Preliminary version in FOCS 1998MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM Journal on Computing 26, 1510–1523 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ben-Or, M., Hassidim, A.: Quantum search in an ordered list via adaptive learning, quant-ph/0703231Google Scholar
  8. 8.
    Brookes, E.M., Jacokes, M.B., Landahl, A.J.: An improved quantum algorithm for searching an ordered list (2004)Google Scholar
  9. 9.
    Buhrman, H., de Wolf, R.: A lower bound for quantum search of an ordered list. Information Processing Letters 70(5), 205–209 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Childs, A.M., Landahl, A.J., Parrilo, P.A.: Improved quantum algorithms for the ordered search problem via semidefinite programming. Physical Review A 75(3), 032335 (2007)CrossRefGoogle Scholar
  11. 11.
    Choi, M.-D.: Tricks or treats with the Hilbert matrix. American Mathematical Monthly 90(5), 301–312 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the speed of quantum computation for insertion into an ordered list, quant-ph/9812057Google Scholar
  13. 13.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Invariant quantum algorithms for insertion into an ordered list, quant-ph/9901059Google Scholar
  14. 14.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  15. 15.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters 79, 325–328 (1997); Preliminary version in STOC 1996CrossRefGoogle Scholar
  16. 16.
    Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In: Proc. 39th STOC, pp. 526–535 (2007)Google Scholar
  17. 17.
    Høyer, P., Neerbek, J., Shi, Y.: Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica 34(4), 429–448 (2002); Preliminary version in ICALP 2001MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Laplante, S., Magniez, F.: Lower bounds for randomized and quantum query complexity using Kolmogorov arguments. In: Proc. 19th CCC, pp. 294–304 (2004)Google Scholar
  19. 19.
    Špalek, R.: The multiplicative quantum adversary. In: Proc. 23rd CCC (to appear, 2008), available at quant-ph/0703237Google Scholar
  20. 20.
    Špalek, R., Szegedy, M.: All quantum adversary methods are equivalent. Theory of Computing 2(1), 1–18 (2006); Preliminary version in ICALP 2005MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhang, S.: On the power of Ambainis’s lower bounds. Theoretical Computer Science 339(2-3), 241–256 (2005); Preliminary version in ICALP 2004MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrew M. Childs
    • 1
  • Troy Lee
    • 2
  1. 1.Department of Combinatorics & Optimization and Institute for Quantum ComputingUniversity of WaterlooCanada
  2. 2.Department of Computer ScienceRutgers UniversityUSA

Personalised recommendations