Complementation, Disambiguation, and Determinization of Büchi Automata Unified

  • Detlef Kähler
  • Thomas Wilke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5125)


We present a uniform framework for (1) complementing Büchi automata, (2) turning Büchi automata into equivalent unambiguous Büchi automata, and (3) turning Büchi automata into equivalent deterministic automata. We present the first solution to (2) which does not make use of McNaughton’s theorem (determinization) and an intuitive and conceptually simple solution to (3).

Our results are based on Muller and Schupp’s procedure for turning alternating tree automata into non-deterministic ones.


Acceptance Condition Isomorphic Copy Deterministic Automaton Split Tree Complementation Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schulte-Althoff, C., Thomas, W., Wallmeier, N.: Observations on determinization of Büchi automata. Theor. Comput. Sci. 363(2), 224–233 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, A.: Rational omega-languages are non-ambiguous. Theor. Comput. Sci. 26, 221–223 (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Logic, Methodology, and Philosophy of Science: Proc. of the 1960 International Congress, pp. 1–11. Stanford University Press, Stanford (1962)Google Scholar
  4. 4.
    Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Information and Control 61(3), 175–201 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter. Int. J. Found. Comput. Sci. 17(4), 851–868 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gurevich, Y., Harrington, L.: Trees, automata, and games. In: 14th ACM Symposium on the Theory of Computing, San Francisco, Calif, pp. 60–65. ACM, New York (1982)Google Scholar
  7. 7.
    Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing nondeterministic Büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Klarlund, N.: Progress measures for complementation of ω-automata with applications to temporal logic. In: 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, pp. 358–367. IEEE, Los Alamitos (1991)Google Scholar
  9. 9.
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Comput. Logic 2(3), 408–429 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kähler, D.: Determinisierung von ω-Automaten. Diploma thesis, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel (2001)Google Scholar
  11. 11.
    McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Information and Control 9, 521–530 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Michel, M.: Complementation is more difficult with automata on infinite words (unpublished notes) (1988)Google Scholar
  13. 13.
    Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 4th Annual IEEE Symposium on Switching Circuit Theory and Logical Design, pp. 3–16 (1963)Google Scholar
  14. 14.
    Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra. Theor. Comput. Sci. 141(1&2), 69–107 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic Parity automata. In: 21th IEEE Symposium on Logic in Computer Science, Seattle, WA, USA, Proceedings, pp. 255–264. IEEE, Los Alamitos (2006)Google Scholar
  16. 16.
    Ozer Rabin, M.: Decidability of second-order theories and finite automata on infinite trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Safra, S.: On the complexity of ω-automata. In: 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, pp. 319–327. IEEE, Los Alamitos (1988)Google Scholar
  18. 18.
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with appplications to temporal logic. Theor. Comput. Sci. 49, 217–237 (1987)CrossRefzbMATHGoogle Scholar
  19. 19.
    Thomas, W.: Complementation of Büchi automata revised. In: Karhumäki, J., Maurer, H.A., Paun, G., Rozenberg, G. (eds.) Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp. 109–120. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Vardi, M.Y., Wilke, Th.: Automata: from logics to algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games, vol. 2, pp. 629–736. Amsterdam University Press, Amsterdam (2007)Google Scholar
  21. 21.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37Google Scholar
  22. 22.
    Yan, Q.: Lower bounds for complementation of ω-automata via the full automata technique. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 589–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Detlef Kähler
    • 1
  • Thomas Wilke
    • 1
  1. 1.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations