Faster Algebraic Algorithms for Path and Packing Problems

  • Ioannis Koutis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5125)

Abstract

We study the problem of deciding whether an n-variate polynomial, presented as an arithmetic circuit G, contains a degree k square-free term with an odd coefficient. We show that if G can be evaluated over the integers modulo 2k + 1 in time t and space s, the problem can be decided with constant probability in O((kn + t)2k) time and O(kn + s) space. Based on this, we present new and faster algorithms for two well studied problems: (i) an O*(2mk) algorithm for the m-set k-packing problem and (ii) an O*(23k/2) algorithm for the simple k-path problem, or an O*(2k) algorithm if the graph has an induced k-subgraph with an odd number of Hamiltonian paths. Our algorithms use poly(n) random bits, comparing to the 2O(k) random bits required in prior algorithms, while having similar low space requirements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856 (1995)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: SODA 2007: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp. 298–307 (2007)Google Scholar
  3. 3.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing. J. Algorithms 50(1), 106–117 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: WG: Graph-Theoretic Concepts in Computer Science, 32nd International Workshop, pp. 58–67 (2006)Google Scholar
  7. 7.
    Koutis, I.: A faster parameterized algorithm for set packing. Information Processing Letters 94(1), 4–7 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Liu, Y., Lu, S., Chen, J., Sze, S.-H.: Greedy localization and color-coding: Improved matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the complexity of the V-C dimension. J. Comput. Syst. Sci. 53(2), 161–170 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University, Cambridge (1999)MATHGoogle Scholar
  11. 11.
    Valiant, L.G.: Why is boolean complexity difficult? In: Boolean Function Complexity. Lond. Math. Soc. Lecure Note Ser, vol. 169Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ioannis Koutis
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburgh 

Personalised recommendations