A PTAS for Static Priority Real-Time Scheduling with Resource Augmentation

  • Friedrich Eisenbrand
  • Thomas Rothvoß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5125)


We present a polynomial time approximation scheme for the real-time scheduling problem with fixed priorities when resource augmentation is allowed. For a fixed ε> 0, our algorithm computes an assignment using at most (1 + εOPT + 1 processors in polynomial time, which is feasible if the processors have speed 1 + ε. We also show that, unless P = NP, there does not exist an asymptotic FPTAS for this problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baruah, S., Goossens, J.: Scheduling real-time tasks: Algorithms and complexity. In: Leung, J.Y.-T. (ed.) Handbook of Scheduling — Algorithms, Models, and Performance Analysis, ch. 28. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar
  2. 2.
    Davari, S., Dhall, S.K.: On-line algorithms for allocating periodic-time-critical tasks on multiprocessor systems. Informatica (Slovenia) 19(1) (1995)Google Scholar
  3. 3.
    Dhall, S.K.: Approximation algorithms for scheduling time-critical jobs on multiprocessor systems. In: Leung, J.Y.-T. (ed.) Handbook of Scheduling — Algorithms, Models, and Performance Analysis, ch. 32, Chapman & Hall/CRC, Boca Raton (2004)Google Scholar
  4. 4.
    Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combinatorica 1(4), 349–355 (1981)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fisher, N., Baruah, S.: A fully polynomial-time approximation scheme for feasibility analysis in static-priority systems with arbitrary relative deadlines. In: ECRTS 2005: Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS 2005), pp. 117–126. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)MATHGoogle Scholar
  7. 7.
    Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 13(3), 502–524 (1992)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: 23rd annual symposium on foundations of computer science, Chicago, Ill., pp. 312–320. IEEE, New York (1982)CrossRefGoogle Scholar
  9. 9.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Liebeherr, J., Burchard, A., Oh, Y., Son, S.H.: New strategies for assigning real-time tasks to multiprocessor systems. IEEE Trans. Comput. 44(12), 1429–1442 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Oh, Y., Son, S.H.: Allocating fixed-priority periodic tasks on multiprocessor systems. Real-Time Syst. 9(3), 207–239 (1995)CrossRefGoogle Scholar
  13. 13.
    Schuurman, P., Woeginger, G.: Approximation schemes – a tutorial. In: Möhring, R.H., Potts, C.N., Schulz, A.S., Woeginger, G.J., Wolsey, L.A. (eds.) Lectures on Scheduling (to appear, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Friedrich Eisenbrand
    • 1
  • Thomas Rothvoß
    • 1
  1. 1.Institute of MathematicsÉcole Polytechnique Féderale de LausanneLausanneSwitzerland

Personalised recommendations