Attending to the Stream of Consciousness – A Methodological Challenge

Attention is usually conceptualized, and empirically approached, as a matter of selection, information reduction, and performance enhancement. In this context, a wealth of experimental approaches have been developed to study sustained attention, selective attention, orienting, divided attention, conflict resolution, and so on. However, much less importance has been traditionally accorded to a more intimate yet pervasive aspect of attention: how it continuously shifts and moves within the stream of consciousness — the ongoing flow of perceptions, thoughts, images, and feelings we all experience during any normal day. In this chapter we survey some of the traditional ways in which attention is experimentally studied while pointing out some limitations and potential interests these approaches have for the study of attention in the stream of consciousness. We highlight, based on a phenomenological approach to its dynamics, one crucial aspect of attention that has been systematically neglected, and that could have important consequences for its study. Taking into account the spontaneous nature of attentional shifts during the stream of consciousness leads us to consider recent developments in brain imaging, experimental psychology, and signal analysis that are beginning to establish a framework for the scientific study of this elusive phenomenon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alderman, N., Burgess, P. W., Knight, C.,&Henman, C. (2003). Ecological validity of a simplified version of the multiple errands shopping test. Journal of International Neuropsychological Society, 9(1), 31–44CrossRefGoogle Scholar
  2. Anllo-Vento, L. (1995). Shifting attention in visual space: The effects of peripheral cueing on brain cortical potentials. The International Journal of Neuroscience, 80(1–4), 353–370PubMedCrossRefGoogle Scholar
  3. Antrobus, J. S.,&Singer, J. L. (1964). Eye movements accompanying daydreaming, visual imagery, and thought suppression. Journal of Abnormal Psychology, 69, 244–252PubMedCrossRefGoogle Scholar
  4. Antrobus, J. S., Singer, J. L., Goldstein, S.,&Fortgang, M. (1970). Mindwandering and cognitive structure. Transactions of the New York Academy of Sciences, 32(2), 242–252PubMedGoogle Scholar
  5. Arnell, K. M., Howe, A. E., Joanisse, M. F.,&Klein, R. M. (2006). Relationships between atten-tional blink magnitude, RSVP target accuracy, and performance on other cognitive tasks. Memory and Cognition, 34(7), 1472–1483Google Scholar
  6. Arvidson, P. S. (1996). Towards a phenomenology of attention. Human Studies, 19, 71–84CrossRefGoogle Scholar
  7. Arvidson, P. S. (2003). A lexicon of attention: From cognitive science to phenomenology. Phenomenology and the Cognitive Sciences, 2, 99–132CrossRefGoogle Scholar
  8. Ballard, C. G., Aarsland, D., McKeith, I., O'Brien, J., Gray, A., Cormack, F., et al. (2002). Fluctuations in attention: PD dementia vs. DLB with parkinsonism. Neurology, 59(11), 1714–1720PubMedGoogle Scholar
  9. Bastiaansen, M. C., Bocker, K. B., Brunia, C. H., de Munck, J. C.,&Spekreijse, H. (2001). Event- related desynchronization during anticipatory attention for an upcoming stimulus: A compara tive EEG/MEG study. Clinical Neurophysiology, 112(2), 393–403PubMedCrossRefGoogle Scholar
  10. Belmonte, M. (1998). Shifts of visual spatial attention modulate a steady-state visual evoked potential. Brain Research. Cognitive Brain Research, 6(4), 295–307PubMedCrossRefGoogle Scholar
  11. Bénar, C., Clerc, M.,&Papadopoulo, T. (2007). Adaptive time-frequency models for single-trial M/EEG analysis. Information Process in Medical Imaging, 20, 458–469CrossRefGoogle Scholar
  12. Berger, H. (1969). On the electroencephalogram of man. Electroencephalography and Clinical Neurophysiology, (Suppl 28), 37–73Google Scholar
  13. Besserve, M., Jerbi, K., Laurent, F., Baillet, S., Martinerie, J.,&Garnero, L. (2007). Classification methods for ongoing EEG and MEG signals. Biological Research, 40(4), 415–437PubMedGoogle Scholar
  14. Biswal, B., Yetkin, F. Z., Haughton, V. M.,&Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541PubMedCrossRefGoogle Scholar
  15. Brunia, C. H.,&van Boxtel, G. J. (2001). Wait and see. International Journal of Psychophysiology, 43(1), 59–75PubMedCrossRefGoogle Scholar
  16. Buchanan, J. J., Kelso, J. A.,&Fuchs, A. (1996). Coordination dynamics of trajectory formation. Biological Cybernetics, 74(1), 41–54PubMedCrossRefGoogle Scholar
  17. Burgess, P. W., Dumontheil, I.,&Gilbert, S. J. (2007). The gateway hypothesis of rostral prefron- tal cortex (area 10) function. Trends in Cognitive Science, 11(7), 290–298CrossRefGoogle Scholar
  18. Burkitt, G. R., Silberstein, R. B., Cadusch, P. J.,&Wood, A. W. (2000). Steady-state visual evoked potentials and travelling waves. Clinical Neurophysiology, 111(2), 246–258PubMedCrossRefGoogle Scholar
  19. Byvatov, E.,&Schneider, G. (2003). Support vector machine applications in bioinformatics. Applied Bioinformatics, 2(2), 67–77PubMedGoogle Scholar
  20. Clark, A. (1999). An embodied cognitive science? Trends in Cognitive Science, 3(9), 345–351CrossRefGoogle Scholar
  21. Corbetta, M.,&Shulman, G. L. (1998). Human cortical mechanisms of visual attention during orienting and search. Philosophical Transactions of the Royal Society of London, 353(1373), 1353–1362PubMedCrossRefGoogle Scholar
  22. Corbetta, M.,&Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215PubMedCrossRefGoogle Scholar
  23. Corbetta, M., Patel, G.,&Shulman, G. L. (2008) The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3):306–24PubMedCrossRefGoogle Scholar
  24. Cosmelli, D., David, O., Lachaux, J. P., Martinerie, J., Garnero, L., Renault, B., et al. (2004). Waves of consciousness: Ongoing cortical patterns during binocular rivalry. Neuroimage, 23(1), 128–140PubMedCrossRefGoogle Scholar
  25. Cosmelli, D., Lachaux, J.-P.,&Thompson, E. (2007). Neurodynamical approaches to consciousness. In P. Zelazo, M. Moscovitch,&E. Thompson (Ed.), The cambridge handbook of consciousness. Cambridge: Cambridge University PressGoogle Scholar
  26. Cosmelli, D.,&Thompson, E. (2007). Mountains and valleys: Binocular rivalry and the flow of experience. Consciousness and Cognition, 16(3), 623–641PubMedCrossRefGoogle Scholar
  27. David, O., Cosmelli, D., Hasboun, D.,&Garnero, L. (2003). A multitrial analysis for revealing significant corticocortical networks in magnetoencephalography and electroencephalography. Neuroimage, 20(1), 186–201PubMedCrossRefGoogle Scholar
  28. Davis, E. T.,&Palmer, J. (2004). Visual search and attention: An overview. Spatial Vision, 17(4–5), 249–255PubMedCrossRefGoogle Scholar
  29. Delorme, A.,&Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21PubMedCrossRefGoogle Scholar
  30. Depraz, N. (2004). Where is the phenomenology of attention that Husserl intended to perform? A transcendental pragmatic-oriented description of attention. Continental Philosophy Review, 37, 5–20CrossRefGoogle Scholar
  31. Duann, J. R., Jung, T. P., Kuo, W. J., Yeh, T. C., Makeig, S., Hsieh, J. C., et al. (2002). Single-trial variability in event-related BOLD signals. Neuroimage, 15(4), 823–835PubMedCrossRefGoogle Scholar
  32. Eimer, M. (2001). Crossmodal links in spatial attention between vision, audition, and touch: Evidence from event-related brain potentials. Neuropsychologia, 39(12), 1292–1303PubMedCrossRefGoogle Scholar
  33. Eimer, M.,&Driver, J. (2000). An event-related brain potential study of cross-modal links in spatial attention between vision and touch. Psychophysiology, 37(5), 697–705PubMedCrossRefGoogle Scholar
  34. Eimer, M.,&Van Velzen, J. (2002). Crossmodal links in spatial attention are mediated by supramodal control processes: Evidence from event-related potentials. Psychophysiology, 39(4), 437–449PubMedCrossRefGoogle Scholar
  35. Eimer, M., van Velzen, J., Forster, B.,&Driver, J. (2003). Shifts of attention in light and in darkness: An ERP study of supramodal attentional control and crossmodal links in spatial attention. Brain Research, 15(3), 308–323PubMedGoogle Scholar
  36. Ericsson, K. A.,&Simon, H. A. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA: e MITGoogle Scholar
  37. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J.,&Posner, M. (2005). The activation of attentional networks. Neuroimage, 26(2), 471–479PubMedCrossRefGoogle Scholar
  38. Fan, J., McCandliss, B. D., Sommer, T., Raz, A.,&Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347PubMedCrossRefGoogle Scholar
  39. Fan, J.,&Posner, M. (2004). Human attentional networks. Psychiatrische Praxis, 31(Suppl 2), S210–S214PubMedCrossRefGoogle Scholar
  40. Faure, P.,&Korn, H. (2001). Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l'Académie Des Sciences. Série III, 324(9), 773–793CrossRefGoogle Scholar
  41. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L.,&Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 10046–10051PubMedCrossRefGoogle Scholar
  42. Fox, M. D.,&Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711PubMedCrossRefGoogle Scholar
  43. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C.,&Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678PubMedCrossRefGoogle Scholar
  44. Fox, M. D., Snyder, A. Z., Vincent, J. L.,&Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56(1), 171–184PubMedCrossRefGoogle Scholar
  45. Fox, M. D., Snyder, A. Z., Zacks, J. M.,&Raichle, M. E. (2006). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience, 9(1), 23–25PubMedCrossRefGoogle Scholar
  46. Foxe, J. J.,&Simpson, G. V. (2005). Biasing the brain's attentional set: II. effects of selective intersensory attentional deployments on subsequent sensory processing. Experimental Brain Research. Experimentelle Hirnforschung, 166(3–4), 393–401CrossRefGoogle Scholar
  47. Foxe, J. J., Simpson, G. V.,&Ahlfors, S. P. (1998). Parieto-occipital approximately 10 Hz activity reflects anticipatory state of visual attention mechanisms. Neuroreport, 9(17), 3929–3933PubMedCrossRefGoogle Scholar
  48. Foxe, J. J., Simpson, G. V., Ahlfors, S. P.,&Saron, C. D. (2005). Biasing the brain's attentional set: I. cue driven deployments of intersensory selective attention. Experimental Brain Research. Experimentelle Hirnforschung, 166(3–4), 370–392CrossRefGoogle Scholar
  49. Gilbert, S. J., Dumontheil, I., Simons, J. S., Frith, C. D.,&Burgess, P. W. (2007). Comment on “Wandering minds: The default network and stimulus-independent thought”. Science, 317(5834), 43; author reply 43PubMedCrossRefGoogle Scholar
  50. Gilbert, S. J., Frith, C. D.,&Burgess, P. W. (2005). Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought. European Journal of Neuroscience, 21(5), 1423–1431PubMedCrossRefGoogle Scholar
  51. Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., Kim, Y. H., Meyer, J. R., et al. (1999). A large-scale distributed network for covert spatial attention: Further anatomical delineation based on stringent behavioural and cognitive controls. Brain, 122 (Pt 6), 1093–1106PubMedCrossRefGoogle Scholar
  52. Griffin, I. C.,&Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176–1194PubMedCrossRefGoogle Scholar
  53. Gusnard, D. A., Akbudak, E., Shulman, G. L.,&Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4259–4264PubMedCrossRefGoogle Scholar
  54. Hillyard, S. A.,&Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 781–787PubMedCrossRefGoogle Scholar
  55. Hillyard, S. A.,&Kutas, M. (1983). Electrophysiology of cognitive processing. Annual Review of Psychology, 34, 33–61PubMedCrossRefGoogle Scholar
  56. Hillyard, S. A.,&Mangun, G. R. (1987). Sensory gating as a physiological mechanism for visual selective attention. Electroencephalography and Clinical Neurophysiology, 40, 61–67Google Scholar
  57. Hommel, B., Kessler, K., Schmitz, F., Gross, J., Akyurek, E., Shapiro, K., et al. (2006). How the brain blinks: Towards a neurocognitive model of the attentional blink. Psychological Research, 70(6), 425–435PubMedCrossRefGoogle Scholar
  58. Hopf, J. M.,&Mangun, G. R. (2000). Shifting visual attention in space: An electrophysiological analysis using high spatial resolution mapping. Clinical Neurophysiology, 111(7), 1241–1257PubMedCrossRefGoogle Scholar
  59. Hopfinger, J. B., Buonocore, M. H.,&Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291PubMedCrossRefGoogle Scholar
  60. Hopfinger, J. B.,&West, V. M. (2006). Interactions between endogenous and exogenous attention on cortical visual processing. Neuroimage, 31(2), 774–789PubMedCrossRefGoogle Scholar
  61. Horovitz, S. G., Fukunaga, M., de Zwart, J. A., van Gelderen, P., Fulton, S. C., Balkin, T. J. & Duyn J.H. (2008). Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Human Brain Mapping, 29(6), 671–682PubMedCrossRefGoogle Scholar
  62. Ioannides, A. A. (2001). Real time human brain function: Observations and inferences from single-trial analysis of magnetoencephalographic signals. Clinical Electroencephalography, 32(3), 98–111PubMedGoogle Scholar
  63. Itti, L., Rees, G.,&Tsotsos, J. K. (2005). Neurobiology of Attention. Elsevier Academic PressGoogle Scholar
  64. Iyer, D.,&Zouridakis, G. (2007). Single-trial evoked potential estimation: Comparison between independent component analysis and wavelet denoising. Clinical Neurophysiology, 118(3), 495–504PubMedCrossRefGoogle Scholar
  65. James, W. (1890). The principles of psychology. (Vol. 1) New York: DoverGoogle Scholar
  66. Johnston, W. A.,&Dark, V. (1986). Selective attention. Annual Review of Psychology, 37, 43–75CrossRefGoogle Scholar
  67. Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E.,&Sejnowski, T. J. (2001). Analysis and visualization of single-trial event-related potentials. Human Brain Mapping, 14(3), 166–185PubMedCrossRefGoogle Scholar
  68. Kaiser, J.,&Bertrand, O. (2003). Dynamics of working memory for moving sounds: An event-related potential and scalp current density study. Neuroimage, 19(4), 1427–1438PubMedCrossRefGoogle Scholar
  69. Kastner, S.,&Pinsk, M. A. (2004). Visual attention as a multilevel selection process. Cognitive, Affective, and Behavioral Neuroscience, 4(4), 483–500PubMedCrossRefGoogle Scholar
  70. Kastner, S.,&Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review Neuroscience, 23, 315–341CrossRefGoogle Scholar
  71. Kelley, T. A., Serences, J. T., Giesbrecht, B.,&Yantis, S. (2008). Cortical mechanisms for shifting and holding visuospatial attention. Cerebral Cortex, 18(1), 114–125PubMedCrossRefGoogle Scholar
  72. Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X.,&Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527–537PubMedCrossRefGoogle Scholar
  73. Kinchla, R. A. (1992). Attention. Annual Review Psychology, 43, 711–742CrossRefGoogle Scholar
  74. Kiss, M., Van Velzen, J.,&Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45(2), 240–249PubMedCrossRefGoogle Scholar
  75. Lachaux, J. P., Lutz, A., Rudrauf, D., Cosmelli, D., Le Van Quyen, M., Martinerie, J., et al. (2002). Estimating the time-course of coherence between single-trial brain signals: An introduction to wavelet coherence. Neurophysiologie Clinique-Clinical Neurophysiology, 32(3), 157–174PubMedCrossRefGoogle Scholar
  76. Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., et al. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11053–11058PubMedCrossRefGoogle Scholar
  77. Le Van Quyen, M., Chavez, M., Rudrauf, D.,&Martinerie, J. (2003). Exploring the nonlinear dynamics of the brain. Journal of Physiology, (Paris), 97(4–6), 629–639CrossRefGoogle Scholar
  78. Lehmann, D. (1971). Topography of spontaneous alpha EEG fields in humans. Electroencephalo-graphy and Clinical Neurophysiology, 30(2), 161–162Google Scholar
  79. Lehmann, D. (1984). EEG assessment of brain activity: Spatial aspects, segmentation and imaging. International Journal of Psychophysiology, 1(3), 267–276PubMedCrossRefGoogle Scholar
  80. Lehmann, D. (1989). Brain electrical mapping of cognitive functions for psychiatry: Functional micro-states. Psychiatry Research, 29(3), 385–386PubMedCrossRefGoogle Scholar
  81. Lehmann, D., Henggeler, B., Koukkou, M.,&Michel, C. M. (1993). Source localization of brain electric field frequency bands during conscious, spontaneous, visual imagery and abstract thought. Brain Research. Cognitive Brain Research, 1(4), 203–210PubMedCrossRefGoogle Scholar
  82. Lehmann, D., Strik, W. K., Henggeler, B., Koenig, T.,&Koukkou, M. (1998). Brain electric micro-states and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. International Journal of Psychophysiology, 29(1), 1–11PubMedCrossRefGoogle Scholar
  83. Leopold, D. A.,&Logothetis, K. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Science 3(7), 254–264CrossRefGoogle Scholar
  84. Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M.,&Ilmoniemi, R. J. (2001). Long-range temporal correlations and scaling behavior in human brain oscillations. Journal of Neuroscience, 21(4), 1370–1377PubMedGoogle Scholar
  85. Lins, O. G.,&Picton, T. W. (1995). Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalography and Clinical Neurophysiology, 96(5), 420–432PubMedCrossRefGoogle Scholar
  86. Luck, S. J.,&Ford, M. A. (1998). On the role of selective attention in visual perception. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 825–830PubMedCrossRefGoogle Scholar
  87. Makeig, S., Debener, S., Onton, J.,&Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204–210PubMedCrossRefGoogle Scholar
  88. Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4–18PubMedCrossRefGoogle Scholar
  89. Mason, M. F., Norton, M. I., Horn, J. D. V., Wegner, D. M., Grafton, S. T.,&Macrae, C. N. (2007a). Response to comment: “Wandering minds: The default network and stimulus-independent thought.” Science, 317, 43cCrossRefGoogle Scholar
  90. Mason, M. F., Norton, M. I., Horn, J. D. V., Wegner, D. M., Grafton, S. T.,&Macrae, C. N. (2007b). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395CrossRefGoogle Scholar
  91. McGuire, P. K., Silbersweig, D. A., Murray, R. M., David, A. S., Frackowiak, R. S.,&Frith, C. D. (1996). Functional anatomy of inner speech and auditory verbal imagery. Psychological Medicine, 26(1), 29–38PubMedCrossRefGoogle Scholar
  92. McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., et al. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6(3), 160–188PubMedCrossRefGoogle Scholar
  93. McKeown, M. J.,&Sejnowski, T. J. (1998). Independent component analysis of fMRI data: Examining the assumptions. Human Brain Mapping, 6(5–6), 368–372PubMedCrossRefGoogle Scholar
  94. Muller, M. M., Teder-Salejarvi, W.,&Hillyard, S. A. (1998). The time course of cortical facilitation during cued shifts of spatial attention. Nature Neuroscience, 1(7), 631–634PubMedCrossRefGoogle Scholar
  95. Nobre, A. C. (2001). Orienting attention to instants in time. Neuropsychologia, 39(12), 1317–1328PubMedCrossRefGoogle Scholar
  96. Nobre, A. C., Coull, J. T., Maquet, P., Frith, C. D., Vandenberghe, R.,&Mesulam, M. M. (2004). Orienting attention to locations in perceptual versus mental representations. Journal of Cognitive Neuroscience, 16(3), 363–373PubMedCrossRefGoogle Scholar
  97. Oken, B. S., Salinsky, M. C.,&Elsas, S. M. (2006). Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clinical Neurophysiology, 117(9), 1885–1901PubMedCrossRefGoogle Scholar
  98. Parasuraman, R. (1998). The attentive brain. Cambridge, MA: MITGoogle Scholar
  99. Peltier, S. J., Kerssens, C., Hamann, S. B., Sebel, P. S., Byas-Smith, M.,&Hu, X. (2005). Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport, 16(3), 285–288PubMedCrossRefGoogle Scholar
  100. Pope, K. S.,&Singer, J. L. (1978). The stream of consciousness. New York: Plenum PressGoogle Scholar
  101. Popple, A. V.,&Levi, D. M. (2007). Attentional blinks as errors in temporal binding. Vision Research, 47(23), 2973–2981PubMedCrossRefGoogle Scholar
  102. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25PubMedCrossRefGoogle Scholar
  103. Posner, M. I. (Ed.). (2004). Cognitive neuroscience of attention. New York: The Guilford PressGoogle Scholar
  104. Posner, M. I.,&Rothbart, M. K. (1998). Attention, Self-regulation and Consciousness. Philosophical Transactions of the Royal Society of London B, 353, 1915–1927CrossRefGoogle Scholar
  105. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A.,&Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682PubMedCrossRefGoogle Scholar
  106. Raz, A.,&Buhle, J. (2006). Typologies of attentional networks. Nature Reviews, 7(5), 367–379PubMedCrossRefGoogle Scholar
  107. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T.,&Yiend, J. (1997). ‘Oops!’ : Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758PubMedCrossRefGoogle Scholar
  108. Röschke, J., Mann, K., Wagner, M., Grözinger, M., Fell, J.,&Frank, C. (1996). An approach to single trial analysis of event-related potentials based on signal detection theory. International Journal of Psychophysiology, 22(3), 155–162PubMedCrossRefGoogle Scholar
  109. Rudrauf, D., Douiri, A., Kovach, C., Lachaux, J. P., Cosmelli, D., Chavez, M., Adam C., Renault B., Martinerie J., Le Van Quyen M. (2006). Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals. Neuroimage, 31(1), 209–227PubMedCrossRefGoogle Scholar
  110. Rushworth, M. F., Passingham, R. E.,&Nobre, A. C. (2005). Components of attentional set-switching. Experimental Psychology, 52(2), 83–98PubMedGoogle Scholar
  111. Sarter, M., Givens, B.,&Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Brain Research Review, 35(2), 146–160CrossRefGoogle Scholar
  112. Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., et al. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. The European Journal of Neuroscience, 22(11), 2917–2926PubMedCrossRefGoogle Scholar
  113. Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive Sciences, 8(5), 223–230PubMedCrossRefGoogle Scholar
  114. Singer, J. L. (1974). Daydreaming and the stream of thought. American Scientist, 62(4), 417–425PubMedGoogle Scholar
  115. Singer, J. L.,&Antrobus, J. S. (1963). A factor-analytic study of daydreaming and conceptually-related cognitive and personality variables. Perceptual and Motor Skills, 17, 187–209PubMedGoogle Scholar
  116. Smallwood, J., Beach, E., Schooler, J. W.,&Handy, T. C. (2008). Going AWOL in the brain: Mind wandering reduces cortical analysis of external events. Journal of Cognitive Neuroscience, 20(3), 458–469PubMedCrossRefGoogle Scholar
  117. Smallwood, J., Fishman, D. J.,&Schooler, J. W. (2007). Counting the cost of an absent mind: Mind wandering as an underrecognized influence on educational performance. Psychonomic Bulletin and Review, 14(2), 230–236PubMedGoogle Scholar
  118. Smallwood, J.,&Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132(6), 946–958PubMedCrossRefGoogle Scholar
  119. Smid, H. G. O. M., de Witte, M. R., Homminga, I.,&van den Bosch, R. J. (2006). Sustained and transient attention in the continuous performance task. Journal of Clinical Experimental Neuropsychology, 28(6), 859–883CrossRefGoogle Scholar
  120. Smilek, D., Birmingham, E., Cameron, D., Bischof, W.,&Kingstone, A. (2006). Cognitive Ethology and exploring attention in real-world scenes. Brain Research, 1080(1), 101–119PubMedCrossRefGoogle Scholar
  121. Sonuga-Barke, E. J. S.,&Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience and Biobehavioral Reviews, 31(7), 977–986PubMedCrossRefGoogle Scholar
  122. Stam, C. J.,&de Bruin, E. A. (2004). Scale-free dynamics of global functional connectivity in the human brain. Human Brain Mapping, 22(2), 97–109PubMedCrossRefGoogle Scholar
  123. Steinbock, A. (2004). Affection and attention: On the phenomenology of becoming aware. Continental Philosophy Review, 37, 21–43CrossRefGoogle Scholar
  124. Sturm, W.,&Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14(1 Pt 2), S76–S84PubMedCrossRefGoogle Scholar
  125. Thompson, E.,&Varela, F. J. (2001). Radical embodiment: Neural dynamics and consciousness. Trends in Cognitive Sciences, 5, 418–425PubMedCrossRefGoogle Scholar
  126. Varela, F. J. (1979). Principles of biological autonomy. New York: Elsevier North HollandGoogle Scholar
  127. Vermersch, P. (2004). Attention between phenomenology and experimental psychology.Continental Philosophy Review, 37, 45–81CrossRefGoogle Scholar
  128. Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Essen, D. C. V., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 83–86PubMedCrossRefGoogle Scholar
  129. Wager, T. D., Jonides, J.,&Reading, S. (2004). Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage, 22(4), 1679–1693PubMedCrossRefGoogle Scholar
  130. Wager, T. D., Jonides, J., Smith, E. E.,&Nichols, T. E. (2005). Toward a taxonomy of attention shifting: Individual differences in fMRI during multiple shift types. Cognitive, Affective & Behavioral Neuroscience, 5(2), 127–143CrossRefGoogle Scholar
  131. Wollman, M. C.,&Antrobus, J. S. (1986). Sleeping and waking thought: Effects of external stimulation. Sleep, 9(3), 438–448PubMedGoogle Scholar
  132. Wylie, G. R., Javitt, D. C.,&Foxe, J. J. (2003). Task switching: A high-density electrical mapping study. NeuroImage, 20(4), 2322–2342PubMedCrossRefGoogle Scholar
  133. Yamaguchi, S., Tsuchiya, H.,&Kobayashi, S. (1994). Electroencephalographic activity associated with shifts of visuospatial attention. Brain, 117 (Pt 3), 553–562PubMedCrossRefGoogle Scholar
  134. Yamaguchi, S., Tsuchiya, H.,&Kobayashi, S. (1995). Electrophysiologic correlates of visuo-spa-tial attention shift. Electroencephalography and Clinical Neurophysiology, 94(6), 450–461PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

There are no affiliations available

Personalised recommendations