Automated Assume-Guarantee Reasoning by Abstraction Refinement

  • Mihaela Gheorghiu Bobaru
  • Corina S. Păsăreanu
  • Dimitra Giannakopoulou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5123)


Current automated approaches for compositional model checking in the assume-guarantee style are based on learning of assumptions as deterministic automata. We propose an alternative approach based on abstraction refinement. Our new method computes the assumptions for the assume-guarantee rules as conservative and not necessarily deterministic abstractions of some of the components, and refines those abstractions using counterexamples obtained from model checking them together with the other components. Our approach also exploits the alphabets of the interfaces between components and performs iterative refinement of those alphabets as well as of the abstractions. We show experimentally that our preliminary implementation of the proposed alternative achieves similar or better performance than a previous learning-based implementation.


Model Check Label Transition System Concrete State Membership Query State Model Checker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Madhusudan, P., Nam, W.: Symbolic Compositional Verification by Learning Assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. and Comp. 75(2), 87–106 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beyer, D., Henzinger, T.A., Singh, V.: Algorithms for Interface Synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 4–19. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Automated Assume-Guarantee Reasoning for Simulation Conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Chaki, S., Ouaknine, J., Yorav, K., Clarke, E.: Automated Compositional Abstraction Refinement for Concurrent C Programs: A Two-Level Approach. ENTCS 89(3) (2003)Google Scholar
  6. 6.
    Chaki, S., Strichman, O.: Optimized L*-Based Assume-Guarantee Reasoning. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT, Cambridge (2000)Google Scholar
  9. 9.
    Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking Up is Hard to Do: An Investigation of Decomposition for Assume-Guarantee Reasoning. In: Proc. of ISSTA 2006, pp. 97–108. ACM, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning Assumptions for Compositional Verification. In: ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Gheorghiu, M., Giannakopoulou, D., Pasareanu, C.S.: Refining Interface Alphabets for Compositional Verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Gupta, A., McMillan, K.L., Fu, Z.: Automated Assumption Generation for Compositional Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 420–432. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Jones, C.B.: Specification and Design of (Parallel) Programs. In: Inf. Proc. 1983: Proc. of IFIP 9th World Congress, pp. 321–332. North Holland, Amsterdam (1983)Google Scholar
  14. 14.
    Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. John Wiley & Sons, Chichester (1999)zbMATHGoogle Scholar
  15. 15.
    Pnueli, A.: In Transition from Global to Modular Temporal Reasoning about Programs. Logic and Models of Conc. Sys. 13, 123–144 (1984)Google Scholar
  16. 16.
    Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)zbMATHGoogle Scholar
  17. 17.
    Sinha, N., Clarke, E.M.: SAT-Based Compositional Verification Using Lazy Learning. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mihaela Gheorghiu Bobaru
    • 1
    • 2
  • Corina S. Păsăreanu
    • 1
  • Dimitra Giannakopoulou
    • 1
  1. 1.PSGS and RIACS, NASA Ames Research CenterMoffett FieldUSA
  2. 2.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations