Reactive Kripke Models and Contrary to Duty Obligations

  • Dov M. Gabbay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5076)


This is an intuitive description of our approach to modelling contrary to duty obligations. We shall describe our ideas through the analysis of typical problematic examples taken from Carmo and Jones [6], L. van der Torre [14] and Prakken and Sergot [5].


Reactive Model Evaluation Point Accessibility Relation Proof Theory Double Arrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gabbay, D.M.: Reactive Kripke Semantics and Arc Accessibility. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday. LNCS, vol. 4800, pp. 292–341. Springer, Berlin (2008); Earlier version published. In: Carnielli, W., Dionesio, F. M., Mateus, P. (eds.) Proceeding of CombLog 2004, Centre of Logic and Computation University of Lisbon, pp. 7–20 (2004), Google Scholar
  2. 2.
    Gabbay, D.M., Barringer, H., Rydeheard, D.: Reactive Grammars. DraftGoogle Scholar
  3. 3.
    Gabbay, D.M., Crochemore, M.: Reactive Automata. DraftGoogle Scholar
  4. 4.
    Gabbay, D.M., D’Agostino, M.: Reactive Conditionals. DraftGoogle Scholar
  5. 5.
    Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Studia Logica 57(1), 91–115 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Carmo, J., Jones, A.J.I.: Deontic Logic and Contrary-to-Duties. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 8, pp. 265–343. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Gabbay, D.M.: Reactive Proof Theory. DraftGoogle Scholar
  8. 8.
    Gabbay, D.M., Rodrigues, O., Woods, J.: Belief Contraction, Anti-formulas, and Resource Overdraft: Part I. Logic Journal of the IGPL 10, 601–652 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gabbay, D.M., Rodrigues, O., Woods, J.: Belief Contraction, Anti-formulae and Resource Overdraft: Part II. In: Gabbay, D.M., Rahman, S., Symons, J., van Bendegem, J.-P. (eds.) Logic, Epistemology and the Unity of Science, pp. 291–326. Kluwer, Dordrecht (2004)Google Scholar
  10. 10.
    Gabbay, D.M., Reyle, U.: N-Prolog: An Extension of Prolog with Hypothetical Implications I. Journal of Logic Programming 1, 319–355 (1984)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Makinson, D., van der Torre, L.: Constraints for input-output logics. Journal of Philosophical Logic 30(2), 155–185 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    van der Torre, L.W.N., Tan, Y.-H.: The Temporal Analysis of Chisholm’s Paradox. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and the Ninth Innovative Applications of Artificial Intelligence Conference (1998)Google Scholar
  13. 13.
    Hansson, B.: Standard Dyadic Denotic Logic. Noûs 3, 373–398 (1969)CrossRefMathSciNetGoogle Scholar
  14. 14.
    van der Torre, L.: Violated obligations in a defeasible deontic logic. In: Proceedings of ECAI 1994, Amsterdam, pp. 371–375 (1994)Google Scholar
  15. 15.
    Makinson, D.: Five faces of minimality. Studia Logica 52, 339–379 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Broersen, J., van der Torre, L.: Reasoning About Norms, Obligations, Time and Agents. In: Proceedings of PRIMA 2007. LNCS. Springer, Heidelberg (to appear)Google Scholar
  17. 17.
    Broersen, J.: Modal Action Logics for Reasoning about Reactive Systems, Jan Broersen, PhD-thesis Vrije Universiteit Amsterdam (January 2003)Google Scholar
  18. 18.
    Hansen, J., Pigozzi, G., van der Torre, L.: Ten Philosophical Problems in Deontic Logic. In: Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent Systems, Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)Google Scholar
  19. 19.
    Broersen, J., van der Torre, L.W.N.: Semantic Analysis of Chisholm’s Paradox. In: BNAIC 2005, pp. 28–34 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dov M. Gabbay
    • 1
  1. 1.King’s College London 

Personalised recommendations