Predicting Missing Markers to Drive Real-Time Centre of Rotation Estimation

  • Andreas Aristidou
  • Jonathan Cameron
  • Joan Lasenby
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5098)

Abstract

This paper addresses the problem of real-time location of the joints or centres of rotation (CoR) of human skeletons in the presence of missing data. The data is assumed to be 3d marker positions from a motion capture system. We present an integrated framework which predicts the occluded marker positions using a Kalman filter in combination with inferred information from neighbouring markers and thereby maintains a continuous data-flow. The CoR positions can be calculated with high accuracy even in cases where markers are occluded for a long period of time.

Keywords

Kalman Filter Missing Markers Joint Localisation Motion Capture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hashiguchi, J., Nivomiya, H., Tanaka, H., Nakamura, M., Nobuhara, K.: Biomechanical analysis of a golf swing using motion capture system. In: Proc. of the Japanese Society for Orthopaedic Biomechanics, vol. 27, pp. 325–330 (2006)Google Scholar
  2. 2.
    Broeren, J., Sunnerhagen, K.S., Rydmark, M.: A kinematic analysis of a haptic handheld stylus in a virtual environment: a study in healthy subjects. Journal of NeuroEngineering and Rehabilitation 4,13 (2007)Google Scholar
  3. 3.
    Menache, A.: Understanding Motion Capture for Computer Animation and Video Games. Morgan Kaufmann Publishers Inc, USA (1999)Google Scholar
  4. 4.
    Cameron, J., Lasenby, J.: A real-time sequential algorithm for human joint localization. In: ACM SIGGRAPH Posters, USA, p. 107 (2005)Google Scholar
  5. 5.
    Gamage, S., Lasenby, J.: New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. of Biomechanics 35(1), 87–93 (2002)CrossRefGoogle Scholar
  6. 6.
    Kirk, A.G., O’Brien, J.F., Forsyth, D.A.: Skeletal parameter estimation from optical motion capture data. In: Proc. of the IEEE CVPR, pp. 782–788 (2005)Google Scholar
  7. 7.
    O’Brien, J.F., Bodenheimer, R.E., Brostow, G.J., Hodgins, J.K.: Automatic joint parameter estimation from magnetic motion capture data. In: Proceedings of Graphic Interface, pp. 53–60 (2000)Google Scholar
  8. 8.
    Ehrig, R.M., Taylor, W.R., Duda, G.N., Heller, M.O.: A survey of formal methods for determining the centre of rotation of ball joints. Journal of Biomechanics 39(15), 2798–2809 (2006)CrossRefGoogle Scholar
  9. 9.
    Wiley, D.J., Hahn, J.K.: Interpolation synthesis of articulated figure motion. IEEE Comp. Graphics and Applications 17(6), 39–45 (1997)CrossRefGoogle Scholar
  10. 10.
    Rose, C., Cohen, M., Bodenheimer, B.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Comp. Graphics and Applications 18(5), 32–40 (1998)CrossRefGoogle Scholar
  11. 11.
    Nebel, J.: Keyframe interpolation with self-collision avoidance. In: Proc. of the Workshop on Comp. Animation and Simulation, pp. 77–86. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Van Rhijn, A., Mulder, J.D.: Optical tracking and automatic model estimation of composite interaction devices. In: IEEE VR Conference, pp. 135–142 (2006)Google Scholar
  13. 13.
    Dorfmüller-Ulhaas, K.: Robust optical user motion tracking using a kalman filter. Technical Report TR-2003-6, Institut fuer Informatik 2, 86159 Augsburg (2003)Google Scholar
  14. 14.
    Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K., Colucci, D.: The HiBall tracker: High-performance wide-area tracking for virtual and augmented environments. In: VRST, December 20-22, 1999, pp. 1–10. ACM, New York (1999)CrossRefGoogle Scholar
  15. 15.
    Herda, L., Fua, P., Plänkers, R., Boulic, R., Thalmann, D.: Using skeleton-based tracking to increase the reliability of optical motion capture. Human Movement Science Journal 20(3), 313–341 (2001)CrossRefGoogle Scholar
  16. 16.
    Hornung, A., Sar-Dessai, S.: Self-calibrating optical motion tracking for articulated bodies. In: Proceedings of the IEEE Conference on VR, Washington, DC, USA, pp. 75–82 (2005)Google Scholar
  17. 17.
    Liu, G., McMillan, L.: Estimation of missing markers in human motion capture. The Visual Computer 22(9-11), 721–728 (2006)CrossRefGoogle Scholar
  18. 18.
    Aristidou, A., Cameron, J., Lasenby, J.: Real-time estimation of missing markers in human motion capture. In: Proceedings of the iCBBE 2008 (2008)Google Scholar
  19. 19.
    Horn, B.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Opt. Society of America 4, 629–642 (1987)CrossRefGoogle Scholar
  20. 20.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 35–45 (1960)Google Scholar
  21. 21.
    PhaseSpace Inc.: Optical motion capture systems, http://www.phasespace.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Aristidou
    • 1
  • Jonathan Cameron
    • 1
  • Joan Lasenby
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations