Inverse Kinematics Using Sequential Monte Carlo Methods

  • Nicolas Courty
  • Elise Arnaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5098)


In this paper we propose an original approach to solve the Inverse Kinematics problem. Our framework is based on Sequential Monte Carlo Methods and has the advantage to avoid the classical pitfalls of numerical inversion methods since only direct calculations are required. The resulting algorithm accepts arbitrary constraints and exhibits linear complexity with respect to the number of degrees of freedom. Hence, the proposed system is far more efficient for articulated figures with a high number of degrees of freedom.


Hide Markov Model Inverse Kinematic Kinematic Chain Computer Animation Numerical Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. The Visual Computer 20(6), 402–417 (2004)CrossRefGoogle Scholar
  2. 2.
    Bertram, D., Kuffner, J., Dillmann, R., Asfour, T.: An integrated approach to inverse kinematics and path planning for redundant manipulators. In: ICRA, pp. 1874–1879 (2006)Google Scholar
  3. 3.
    Le Callennec, B., Boulic, R.: Interactive motion deformation with prioritized constraints. Graphical Models 68(2), 175–193 (2006)CrossRefGoogle Scholar
  4. 4.
    Carvalho, S., Boulic, R., Thalmann, D.: Interactive Low-Dimensional Human Motion Synthesis by Combining Motion Models and PIK. Computer Animation & Virtual Worlds 18(4–5), 493–503 (2007)CrossRefGoogle Scholar
  5. 5.
    Chai, J., Hodgins, J.K.: Constraint-based motion optimization using a statistical dynamic model. ACM Tra. on Graphics (Proc. SIGGRAPH) 26(3), 686–696 (2007)Google Scholar
  6. 6.
    Choi, K.J., Ko, H.S.: Online motion retargetting. Journal of Visualization and Computer Animation 11, 223–235 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Sminchisescu, C., Triggs, B.: Fast mixing hyperdynamic sampling. Image and Vision Computing (2006)Google Scholar
  8. 8.
    Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. International Journal of Computer Vision 61(2), 185–205 (2005)CrossRefGoogle Scholar
  9. 9.
    Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo methods in practice. Springer, New York (2001)zbMATHGoogle Scholar
  10. 10.
    Grochow, K., Martin, S., Hertzmann, A., Popovic, Z.: Style-based inverse kinematics. ACM Tra. on Graphics (Proc. SIGGRAPH) 23(3), 522–531 (2004)CrossRefGoogle Scholar
  11. 11.
    Johnson, M.P.: Exploiting quaternions to support expressive interactive character motion. PhD thesis, Massachusetts Institute of Technology (2003)Google Scholar
  12. 12.
    Monzani, J.-S., Baerlocher, P., Boulic, R., Thalmann, D.: Using an intermediate skeleton and inverse kinematics for motion retargetting. Computer Graphics Forum 19(3) (2000)Google Scholar
  13. 13.
    Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. Journal of Humanoid Robotics 2(4) (2005)Google Scholar
  14. 14.
    Tak, S., Ko, H.-S.: A physically-based motion retargeting filter. ACM Tra. On Graphics (TOG) 24(1), 98–117 (2005)CrossRefGoogle Scholar
  15. 15.
    Yamane, K., Nakamura, Y.: Natural motion animation through constraining and deconstraining at will. IEEE Tra. on Visualization and Computer Graphics 09(3), 352–360 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicolas Courty
    • 1
  • Elise Arnaud
    • 2
  1. 1.SAMSARA/VALORIAEuropean University of BrittanyVannesFrance
  2. 2.INRIA Rhône-Alpes, LJKUniversité Joseph FourierGrenobleFrance

Personalised recommendations