HLS: Tunable Mining of Approximate Functional Dependencies

  • Jeremy T. Engle
  • Edward L. Robertson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5071)


This paper examines algorithmic aspects of searching for approximate functional dependencies in a database relation. The goal is to avoid exploration of large parts of the space of potential rules. This is accomplished by leveraging found rules to make finding other rules more efficient. The overall strategy is an attribute-at-a-time iteration which uses local breadth first searches on lattices that increase in width and height in each iteration. The resulting algorithm provides many opportunities to apply heuristics to tune the search for particular data-sets and/or search objectives. The search can be tuned at both the global iteration level and the local search level. A number of heuristics are developed and compared experimentally.


Query Optimization Approximation Measure Breadth First Search Single Space Local Breadth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, S., Brockhausen, P.: Discovery of constraints and data dependencies in databases (extended abstract). In: European Conference on Machine Learning, pp. 267–270 (1995)Google Scholar
  2. 2.
    Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for data cleaning. In: ICDE, pp. 746–755. IEEE, Los Alamitos (2007)Google Scholar
  3. 3.
    Dalkilic, M.M., Robertson, E.L.: Information dependencies. In: PODS, pp. 245–253 (2000)Google Scholar
  4. 4.
    Doan, A.: Illinois semantic integration archive,
  5. 5.
    Giannella, C., Dalkilic, M., Groth, D., Robertson, E.: Improving query evaluation with approximate functional dependency based decompositions. In: Eaglestone, B., North, S.C., Poulovassilis, A. (eds.) BNCOD 2002. LNCS, vol. 2405, pp. 26–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Giannella, C., Robertson, E.: On approximation measures for functional dependencies. Inf. Syst. 29(6), 483–507 (2004)CrossRefGoogle Scholar
  7. 7.
    Hilderman, R., Hamilton, H.: Knowledge discovery and interestingness measures: A survey. Technical Report 99-04, University of Regina (1999)Google Scholar
  8. 8.
    Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algorithm for discovering functional and approximate dependencies. The Computer Journal 42(2), 100–111 (1999)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ilyas, I.F., Markl, V., Haas, P., Brown, P., Aboulnaga, A.: Cords: automatic discovery of correlations and soft functional dependencies. In: SIGMOD Proceedings, pp. 647–658. ACM Press, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from relations. In: ICDT, pp. 129–149. Elsevier Science Publishers, Amsterdam (1995)Google Scholar
  11. 11.
    Mannila, H., Räihä, K.-J.: On the complexity of inferring functional dependencies. Discrete Applied Mathematics 40(2), 237–243 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Matos, V., Grasser, B.: Sql-based discovery of exact and approximate functional dependencies. In: ITiCSE Working Group Reports, pp. 58–63. Association for Computing Machinery, New York (2004)Google Scholar
  13. 13.
    Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill Higher Education, New York (2002)Google Scholar
  14. 14.
    Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J. 27, 379–423, 623–656 (1948)Google Scholar
  15. 15.
    Wolf, G., Khatri, H., Chokshi, B., Fan, J., Chen, Y., Kambhampati, S.: Query processing over incomplete autonomous databases. In: VLDB Proceedings. VLDB Endowment, pp. 651–662 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jeremy T. Engle
    • 1
  • Edward L. Robertson
    • 1
  1. 1.Department of Computer ScienceIndiana UniversityBloomingtonUSA

Personalised recommendations