Comparing the Pre- and Post-specified Peer Models for Key Agreement

  • Alfred Menezes
  • Berkant Ustaoglu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5107)

Abstract

In the pre-specified peer model for key agreement, it is assumed that a party knows the identifier of its intended communicating peer when it commences a protocol run. On the other hand, a party in the post-specified peer model for key agreement does not know the identifier of its communicating peer at the outset, but learns the identifier during the protocol run. In this paper we compare the security assurances provided by the Canetti-Krawczyk security definitions for key agreement in the pre- and post-specified peer models. We give examples of protocols that are secure in one model but insecure in the other. We also enhance the Canetti-Krawczyk security models and definitions to encompass a class of protocols that are executable and secure in both the pre- and post-specified peer models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994), http://www.cs.ucdavis.edu/~rogaway/papers/eakd-abstract.html Google Scholar
  2. 2.
    Boyd, C., Mao, W., Paterson, K.: Key agreement using statically keyed authenticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 248–262. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001), http://eprint.iacr.org/2001/040 CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Krawczyk, H.: Security analysis of IKE. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161. Springer, Heidelberg (2002), http://eprint.iacr.org/2002/120 CrossRefGoogle Scholar
  6. 6.
    Choo, K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof models for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Diffie, W., van Oorschot, P., Wiener, M.: Authentication and authenticated key exchanges. Designs, Codes and Cryptography 2, 107–125 (1992)CrossRefGoogle Scholar
  8. 8.
    Harkins, D., Carrel, D.: The internet key exchange (IKE)., RFC 2409, Internet Engineering Task Force (1998)Google Scholar
  9. 9.
    Kaufman, C. (ed.): Internet key exchange (IKEv2) protocol, RFC 4306, Internet Engineering Task Force (2005)Google Scholar
  10. 10.
    Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol., Cryptology ePrint Archive, Report 2005/176, http://eprint.iacr.org/2005/176; In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005)
  12. 12.
    Krawczyk, H.:“HMQV in IEEE P1363”, submission to the IEEE P1363 working group, July 7 (2006), http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
  13. 13.
    LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for authenticated key agreement. Designs, Codes and Cryptography 28, 119–134 (2003)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement protocol in the NIST SP 800-56A standard. In: Proceedings of ASIACCS 2008, pp. 261–270. ACM Press, New York (2008)CrossRefGoogle Scholar
  17. 17.
    Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models for key agreement, Technical Report CACR 2008-07, University of Waterloo (2008), http://www.cacr.math.uwaterloo.ca
  18. 18.
    Okamoto, T.: Authenticated key exchange and key encapsulation in the standard model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    SP 800-56A Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, National Institute of Standards and Technology (March 2006)Google Scholar
  20. 20.
    Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Designs, Codes and Cryptography 46, 329–342 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alfred Menezes
    • 1
  • Berkant Ustaoglu
    • 1
  1. 1.Department of Combinatorics & OptimizationUniversity of Waterloo 

Personalised recommendations