A Distributed System for Genetic Linkage Analysis

  • Mark Silberstein
  • Dan Geiger
  • Assaf Schuster
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4360)


Linkage analysis is a tool used by geneticists for mapping disease-susceptibility genes in the study of Mendelian and complex diseases. However analyses of large inbred pedigrees with extensive missing data are often beyond the capabilities of a single computer. We present a distributed system called superlink-online for computing multipoint LOD scores of large inbred pedigrees. It achieves high performance via efficient parallelization of the algorithms in superlink, a state-of-the-art serial program for these tasks, and through utilization of thousands of resources residing in multiple opportunistic grid environments. Notably, the system is available online, which allows computationally intensive analyses to be performed with no need for either installation of software, or maintenance of a complicated distributed environment. The main algorithmic challenges have been to efficiently split large tasks for distributed execution in a highly dynamic non-dedicated running environment, as well as to utilize resources in all the available grid environments. Meeting these challenges has provided nearly interactive response time for shorter tasks while simultaneously serving massively parallel ones. The system, which is being used extensively by medical centers worldwide, achieves speedups of up to three orders of magnitude and allows analyses that were previously infeasible.


Grid Resource Grid Environment Hierarchy Level Desktop Grid Genetic Linkage Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Superlink-online: Superlink-online genetic linkage analysis system, (2006)Google Scholar
  2. 2.
    Thain, D., Livny, M.: Building reliable clients and servers. In: Foster, I., Kesselman, C. (eds.) The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, San-Francisco (2003)Google Scholar
  3. 3.
    Kleinrock, L., Muntz, R.: Processor sharing queueing models of mixed scheduling disciplines for time shared systems. Journal of ACM 19, 464–482 (1972)zbMATHCrossRefGoogle Scholar
  4. 4.
    Fishelson, M., Geiger, D.: Exact genetic linkage computations for general pedigrees. Bioinformatics 18(Suppl. 1), 189–198 (2002)Google Scholar
  5. 5.
    Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for general pedigrees. Human Heredity 59, 41–60 (2005)CrossRefGoogle Scholar
  6. 6.
    Silberstein, M., Geiger, D., Schuster, A., Livny, M.: Scheduling of mixed workloads in multi-grids: The grid execution hierarchy. In: 15th IEEE International Symposium on High Performance Distributed Computing (HPDC-15 2006) (2006)Google Scholar
  7. 7.
    CSF: Community scheduler framework, (2006)Google Scholar
  8. 8.
    England, D., Weissman, J.: Costs and benefits of load sharing in the computational grid. In: Feitelson, D.G., Rudolph, L. (eds.) 10th Workshop on Job Scheduling Strategies for Parallel Processing (2004)Google Scholar
  9. 9.
    Vadhiyar, S., Dongarra, J.: Self adaptivity in grid computing. Concurrency and Computation: Practice and Experience 17(2–4), 235–257 (2005)CrossRefGoogle Scholar
  10. 10.
    Friedman, N., Geiger, D., Lotner, N.: Likelihood computation with value abstraction. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 192–200. Morgan Kaufmann, San Francisco (2000)Google Scholar
  11. 11.
    Cooper, G.: The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Dechter, R.: Bucket elimination: A unifying framework for probabilistic inference. In: Jordan, M. (ed.) Learning in Graphical Models, pp. 75–104. Kluwer Academic Press, Dordrecht (1998)Google Scholar
  13. 13.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal of Algorithms and Discrete Methods 8, 277–284 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Knappskog, P., Majewski, J., Livneh, A., Nilsen, P., Bringsli, J., Ott, J., Boman, H.: Cold-Induced Sweating Syndrome is caused by mutations in the CRLF1 Gene. American Journal of Human Genetics 72(2), 375–383 (2003)CrossRefGoogle Scholar
  15. 15.
    Miller, P., Nadkarni, P., Gelernter, G., Carriero, N., Pakstis, A., Kidd, K.: Parallelizing genetic linkage analysis: a case study for applying parallel computation in molecular biology. Computing and Biomedical Research 24(3), 234–248 (1991)CrossRefGoogle Scholar
  16. 16.
    Dwarkadas, S., Schäffer, A., Cottingham, R., Cox, A., Keleher, P., Zwaenepoel, W.: Parallelization of general linkage analysis problems. Human Heredity 44, 127–141 (1994)CrossRefGoogle Scholar
  17. 17.
    Matise, T., Schroeder, M., Chiarulli, D., Weeks, D.: Parallel computation of genetic likelihoods using CRI-MAP, PVM, and a network of distributed workstations. Human Heredity 45, 103–116 (1995)Google Scholar
  18. 18.
    Gupta, S., Schäffer, A., Cox, A., Dwarkadas, S., Zwaenepoel, W.: Integrating parallelization strategies for linkage analysis. Computing and Biomedical Research 28, 116–139 (1995)CrossRefGoogle Scholar
  19. 19.
    Rai, A., Lopez-Benitez, N., Hargis, J., Poduslo, S.: On the parallelization of Linkmap from the LINKAGE/FASTLINK package. Computing and Biomedical Research 33(5), 350–364 (2000)CrossRefGoogle Scholar
  20. 20.
    Kothari, K., Lopez-Benitez, N., Poduslo, S.: High-performance implementation and analysis of the linkmap program. Computing and Biomedical Research 34(6), 406–414 (2001)Google Scholar
  21. 21.
    Conant, G., Plimpton, S., Old, W., Wagner, A., Fain, P., Pacheco, T., Heffelfinger, G.: Parallel Genehunter: implementation of a linkage analysis package for distributed-memory architectures. Journal of Parallel and Distributed Computing 63(7–8), 674–682 (2003)CrossRefGoogle Scholar
  22. 22.
    Dietter, J., Spiegel, A., an Mey, D., Pflug, H.J., al Kateb, H., Hoffmann, K., Wienker, T., Strauch, K.: Efficient two-trait-locus linkage analysis through program optimization and parallelization: application to hypercholesterolemia. European Journal of Human Genetics 12, 542–550 (2005)CrossRefGoogle Scholar
  23. 23.
    Berman, F., Wolski, R.: Scheduling from the perspective of the application. In: 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03), Washington, DC, USA, IEEE Computer Society, pp. 100–111 (1996)Google Scholar
  24. 24.
    Yang, Y., Casanova, H.: Rumr: Robust scheduling for divisible workloads. In: 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03), Washington, DC, USA, IEEE Computer Society, p. 114 (2003)Google Scholar
  25. 25.
    Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, S., Su, A., Zagorodnov, D.: Adaptive computing on the grid using AppLeS. IEEE Transactions on Parallel and Distributed Systems 14(4), 369–382 (2003)CrossRefGoogle Scholar
  26. 26.
    Heymann, E., Senar, M.A., Luque, E., Livny, M.: Adaptive scheduling for master-worker applications on the computational grid. In: GRID 2000, pp. 214–227 (2000)Google Scholar
  27. 27.
    Beaumont, O., Legrand, A., Robert, Y.: Scheduling divisible workloads on heterogeneous platforms. Parallel Computing 29(9), 1121–1152 (2003)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Kondo, D., Chien, A.A., Casanova, H.: Resource management for rapid application turnaround on enterprise desktop grids. In: ACM/IEEE Conference on Supercomputing (SC’04), Washington, DC, USA, IEEE Computer Society, p.17 (2004)Google Scholar
  29. 29.
    MOAB Grid Suite: Moab grid suite, products/moab-grid-suite.php (2006)Google Scholar
  30. 30.
    Dail, H., Sievert, O., Berman, F., Casanova, H., YarKhan, A., Vadhiyar, S., Dongarra, J., Liu, C., Yang, L., Angulo, D., Foster, I.: Scheduling in the grid application development software project. In: Grid Resource Management: State-of-the-art and Future Trends, pp. 73–98 (2004)Google Scholar
  31. 31.
    Vadhiyar, S., Dongarra, J.: A metascheduler for the grid. In: 11th IEEE International Symposium on High Performance Distributed Computing (HPDC’02), Washington, DC, USA, IEEE Computer Society (2002)Google Scholar
  32. 32.
    Sabin, G., Kettimuthu, R., Rajan, A., Sadayappan, P.: Scheduling of parallel jobs in a heterogeneous multi-site environment. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) Job Scheduling Strategies for Parallel Processing, pp. 87–104. Springer, Berlin Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Marchal, L., Yang, Y., Casanova, H., Robert, Y.: Steady-state scheduling of multiple divisible load applications on wide-area distributed computing platforms. International Journal of High Performance Computing Applications (2006, to appear)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Mark Silberstein
    • 1
  • Dan Geiger
    • 1
  • Assaf Schuster
    • 1
  1. 1.Technion – Israel Institute of Technology 

Personalised recommendations