Gene Prediction in Metagenomic Libraries Using the Self Organising Map and High Performance Computing Techniques

  • Nigel McCoy
  • Shaun Mahony
  • Aaron Golden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4360)

Abstract

This paper describes a novel approach for annotating metagenomic libraries obtained from environmental samples utilising the self organising map (SOM) neural network formalism. A parallel implementation of the SOM is presented and its particular usefulness in metagenomic annotation highlighted. The benefits of the parallel algorithm and performance increases are explained, the latest results from annotation on an artificially generated metagenomic library presented and the viability of this approach for implementation on existing metagenomic libraries is assessed.

Keywords

Self Organising Map Metagenomics HPC MPI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hugenholtz, P.: Exploring prokaryotic diversity in the genomic era. Genome Biol 3, REVIEW0003 (2002).Google Scholar
  2. 2.
    Rappe, M., Giovanni, S.: The uncultured microbial majority. Annu. Rev. microbial. 57, 369–394 (2003)CrossRefGoogle Scholar
  3. 3.
    Venter, J C., Remington, K., Heidleberg, J.: Environmental whole genome shotgun sequencing: The Sargasso Sea, Science (2004)Google Scholar
  4. 4.
    Chen, K., Pachter, A.: Bioinformatics for Whole-Genome Shotgun Sequencing of Microbial Communities. PLoS Computational Biology 1, e24 (2005)Google Scholar
  5. 5.
    Riesenfeld, C.S., Schloss, P.D., Handelsman, J.: Metagenomics: Genomic Analysis of Microbial Communities. Annual Review of Genetics 38, 525–552 (2004)CrossRefGoogle Scholar
  6. 6.
    Mahony, S., McInerny, J.O., Smith, T.J., Golden, A.: Gene prediction using the Self Organising Map: automatic generation of multiple gene models. BMC Bioinformatics 5, 23 (2004)Google Scholar
  7. 7.
    Abe et al.: Informatics for unveiling hidden genome signatures. Genome Res. 13, 693–702 (2003)CrossRefGoogle Scholar
  8. 8.
    Kohonen, T.: Self-Organizing Maps. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, Springer, Berlin Heidelberg (1995) Google Scholar
  9. 9.
    Tomsich, P., Rauber, A., Merkl, D.: Optimizing the parSOM neural network implementation for data mining with distributed memory systems and cluster computing. In: Proceedings. 11th International Workshop on Database and Expert Systems Applications, pp. 661–665 (2000)Google Scholar
  10. 10.
    Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete Reference. MIT Press, Cambridge, MA (1996)Google Scholar
  11. 11.
    Rauber, A., Tomsich, P., Merkl, D.: parSOM: A parallel implementation of the self-organizing map exploiting cache effects: making the SOM fit for interactive high-performance data analysis. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, vol. 6, pp.177–182 (2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Nigel McCoy
    • 1
  • Shaun Mahony
    • 2
  • Aaron Golden
    • 1
  1. 1.National University of Ireland, GalwayIreland
  2. 2.Dept of Computational Biology, University of Pittsburgh, Pittsburgh, PAUSA

Personalised recommendations