Grid Computing for the Estimation of Toxicity: Acute Toxicity on Fathead Minnow (Pimephales promelas)

  • Uko Maran
  • Sulev Sild
  • Paolo Mazzatorta
  • Mos Casalegno
  • Emilio Benfenati
  • Mathilde Romberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4360)


The computational estimation of toxicity is time-consuming and therefore needs support for distributed, high-performance and/or grid computing. The major technology behind the estimation of toxicity is quantitative structure activity relationship modelling. It is a complex procedure involving data gathering, preparation and analysis. The current paper describes the use of grid computing in the computational estimation of toxicity and provides a comparative study on the acute toxicity of fathead minnow (Pimephales promelas) comparing the heuristic multi-linear regression and artificial neural network approaches for quantitative structure activity relationship models.


modelling and prediction chemistry QSAR molecular descriptors workflow distributed computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hawkins, D.M.: The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 44, 1–12 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Pande, V.S., Baker, I., Chapman, J., Elmer, S.P., Khaliq, S., Larson, S.M., Rhee, Y.M., Shirts, M.R., Snow, C.D., Sorin, E.J., Zagrovic, B.: Atomistic Protein Folding Simulations on the Submillisecond Time Scale Using Worldwide Distributed Computing. Biopolymers 68, 91–109 (2003)CrossRefGoogle Scholar
  3. 3.
    Folding@Home website at Scholar
  4. 4.
    Grid-BLAST website at Scholar
  5. 5.
    Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: Architecture and Performance of an Enterprise Desktop Grid System. J. Parallel Distrib. Comput. 63, 597–610 (2003)CrossRefGoogle Scholar
  6. 6.
    YarKhan, A., Dongarra, J.J.: Biological Sequence Alignment on the Computational Grid Using the GrADS Framework. Future Gen. Comput. Syst. 21, 980–986 (2005)CrossRefGoogle Scholar
  7. 7.
    Vangrevelinghe, E., Zimmermann, K., Schoepfer, J., Portmann, R., Fabbro, D., Furet, P.: Discovery of a Potent and Selective Protein Kinase CK2 Inhibitor by High-Throughput Docking. J. Med. Chem. 46, 2656–2662 (2003)CrossRefGoogle Scholar
  8. 8.
    Brown, S.P., Muchmore, S.M.: High-Throughput Calculation of Protein-Ligand Binding Affinities: Modification and Adaptation of the MM-PBSA Protocol to Enterprise Grid Computing. J. Chem. Inf. Model. 46, 999–1005 (2006)CrossRefGoogle Scholar
  9. 9.
    Lian, C.C., Tang, F., Issac, P., Krishnan, A.: GEL: Grid Execution Language. J. Parallel Distrib. Comput. 65, 857–869 (2005)CrossRefGoogle Scholar
  10. 10.
    Sild, S., Maran, U., Lomaka, A., Karelson, M.: Open Computing Grid for Molecular Science and Engineering. J. Chem. Inf. Model. 46, 953–959 (2006)Google Scholar
  11. 11.
    Mazzatorta, P., Benfenati, E., Schuller, B., Romberg, M., McCourt, D., Dubitzky, W., Sild, S., Karelson, M., Papp, A., Bágyi, I., Darvas, F.: OpenMolGRID: Molecular Science and Engineering in a Grid Context. In: Proceedings of PDPTA, pp. 775–779. Las Vegas, USA (2004)Google Scholar
  12. 12.
    Dubitzky, D., McCourt, D., Galushka, M., Romberg, M., Schuller, B.: Grid-enabled Data Warehousing for Molecular Engineering. Parallel Computing 30, 1019–1035 (2004)CrossRefGoogle Scholar
  13. 13.
    Schuller, B., Romberg, M., Kirtchakova, L.: Application Driven Grid Developments in the OpenMolGRID project. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, Springer, Berlin Heidelberg New York (2005)Google Scholar
  14. 14.
    Sild, S., Maran, U., Romberg, M., Schuller, B., Benfenati, E.: OpenMolGRID: Using Automated Workflows in GRID Computing Environment. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, Springer, Berlin Heidelberg New York (2005)Google Scholar
  15. 15.
    ECO Update, EPA, Office of emergency remedial response Hazardous Site Evaluation Division (5204G), Intermittent bullettin, Vol. 2(1), Publication 9345.0-05l, (1994)Google Scholar
  16. 16.
    Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D.E., Drummond, R.A.: Predicting modes of toxic action from chemical structure: acute toxicity in the fathead minnow (Pimephales Promelas). Environ. Toxicol. Chem. 16, 948–967 (1997)CrossRefGoogle Scholar
  17. 17.
    Eldred, D.V., Weikel, C.L., Jurs, P.C., Kaiser, K.L.E.: Prediction of Fathead Minnow acute toxicity of organic compounds from molecular structure. Chem. Res. Toxicol. 12, 670–678 (1999)CrossRefGoogle Scholar
  18. 18.
    Nendza, M., Russom, C.L.: QSAR modeling of the ERL-D Fathead Minnow Acute Toxicity Database. Xenobiotica 12, 147–170 (1991)CrossRefGoogle Scholar
  19. 19.
    Karelson, M.: Molecular Descriptors in QSAR/QSPR, Wiley-Interscience (2000)Google Scholar
  20. 20.
    Maran, U., Sild, S.: QSAR Modeling of Mutagenicity on Non-congeneric Sets of Organic Compounds. In: Dubitzky, W., Azuaje, F. (eds.) Artificial Intelligence Methods and Tools for Systems Biology, pp. 19–36. Springer, Dordrecht (2004)CrossRefGoogle Scholar
  21. 21.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. In: Berman, F., Fox, G., Hey, A.J.G. (eds.) Grid Computing: Making the Global Infrastructure a Reality, pp. 171–198. Wiley, Chichester, UK (2003)Google Scholar
  22. 22.
    Zhang, W., Zhang, J., Chang, Y., Chen, S., Du, X., Liu, F., Ma, F., Shen, J.: Drug Discovery Grid: UK e-Science All Hands Meeting. (2005)Google Scholar
  23. 23.
    Gibbins, H., Nadiminti, K., Beeson, B., Chhabra, R., Smith, B., Buyya, R.: The Australian BioGrid Portal: Empowering the Molecular Docking Research Community. In: Technical Report, GRIDS-TR-2005-9, Grid Computing and Distributed Systems Laboratory, University of Melbourne, Australia (June 13, 2005)Google Scholar
  24. 24.
    WISDOM website at Scholar
  25. 25.
    Stevens, R., McEntire, R., Goble, C., Greenwood, M., Zhao, J., Wipat, A., Li, P.: myGrid and the Drug Discovery Process. Drug Discovery Today: BIOSILICO 2, 140–148 (2004)CrossRefGoogle Scholar
  26. 26.
    Rice, P., Longden, I., Bleasby, A.: EMBOSS: The European Molecular Biology Open Software Suite. Trends Gene 16, 276–277 (2000)CrossRefGoogle Scholar
  27. 27.
    OpenMolGRID website at
  28. 28.
    Erwin, D.: UNICORE - A Grid Computing Environment. Practice and Experience Journal 14, 1395–1410 (2002)zbMATHCrossRefGoogle Scholar
  29. 29.
    Maran, U., Sild, S., Kahn, I., Takkis, K.: Mining of the Chemical Information in GRID Environment. Future Gen. Comput. Syst. 23, 76–83 (2007)CrossRefGoogle Scholar
  30. 30.
    Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D.E., Drummond, R.A.: Predicting Modes of Action from Chemical Structure: Acute Toxicity in the Fathead Minnow (Pimephales Promelas). Environmental Tox. and Chem. 16, 948–957 (1997)CrossRefGoogle Scholar
  31. 31.
    Halgren, T.A.: Merck Molecular Force Field. I.–V. J. Comput. Chem. 17, 490–519, 520–552, 553–586, 587–615, 616–641 (1996)CrossRefGoogle Scholar
  32. 32.
    Halgren, T.A.: MMFF VII. Characterization of MMFF94, MMFF94s, and Other Widely Available Force Fields for Conformational Energies and for Intermolecular-Interaction Energies and Geometries. J. Comput. Chem. 20, 730–748 (1999)Google Scholar
  33. 33.
    Chang, G., Guida, W.C., Still, W.C.: An Internal-Coordinate Monte Carlo Method for Searching Conformational Space. J. Am. Chem. Soc. 111, 4379–4386 (1989)CrossRefGoogle Scholar
  34. 34.
    Saunders, M., Houk, K.N., Wu, Y.D., Still, W.C., Lipton, M., Chang, G., Guida, W.C.: Conformations of Cycloheptadecane. A Comparison of Methods for Conformational Searching. J. Am. Chem. Soc. 112, 1419–1427 (1990)Google Scholar
  35. 35.
    MacroModel version 7.0, Interactive Molecular Modeling System, Schrödinger, Inc. Portland (2000)Google Scholar
  36. 36.
    Baker, J.: An Algorithm for the Location of Transition States. J. Comput. Chem. 7, 385–395 (1986)CrossRefGoogle Scholar
  37. 37.
    a) Stewart, J.J.P.: Optimization of Parameters for Semi-Empirical Methods IMethod. J. Comp. Chem. 10, 209–220 (1989); b) Stewart, J.J.P.: Optimization of Parameters for Semi-Empirical Methods II-Applications. J. Comp. Chem. 10, 221–264 (1989); c) Stewart, J.J.P.: Optimization of Parameters for Semi-Empirical Methods III-Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J. Comp. Chem. 12, 320–341 (1991)Google Scholar
  38. 38.
    Stewart, J.J.P.: MOPAC: a semiempirical molecular orbital program. J. Comput. Aid. Mol. Des. 4, 1–45 (1990)CrossRefGoogle Scholar
  39. 39.
    Codessa Pro website at
  40. 40.
    Meylan, W.M., Howard, P.H.: Atom/Fragment Contribution Method for Estimating Octanol-Water Partition Coefficients. J. Pharm. Sci. 84, 83–92 (1995)CrossRefGoogle Scholar
  41. 41.
    Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley, New York (1981)zbMATHGoogle Scholar
  42. 42.
    Zupan, J., Gasteiger, J.: Neural Networks in Chemistry and Drug Design: An Introduction, 2nd edn. Wiley-VCH, Weinheim (1999)Google Scholar
  43. 43.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  44. 44.
    Sild, S., Karelson, M.: A General QSPR Treatment for Dielectric Constants of Organic Compounds. J. Chem. Inf. Comput. Sci. 42, 360–367 (2002)CrossRefGoogle Scholar
  45. 45.
    Maran, U., Sild, S.: QSAR modeling of genotoxicity on non-congeneric sets of organic compounds. Artif. Intell. Rev. 20, 13–38 (2003)CrossRefGoogle Scholar
  46. 46.
    Netzeva, T.I., Aptula, A.O., Benfenati, E., Cronin, M.T.D., Gini, G., Lessigiarska, I., Maran, U., Vračko, M., Schüürmann, G.: Description of the Electronic Structure of Organic Chemicals Using Semiempirical and Ab Initio Methods for Development of Toxicological QSARs. J. Chem. Inf. Model. 45, 106–114 (2005)Google Scholar
  47. 47.
    Papa, E., Villa, F., Gramatica, P.: Statistically Validated QSARs, Based on Theoretical Descriptors, for Modeling Aquatic Toxicity of Organic Chemicals in Pimephales promelas (Fathead Minnow). J. Chem. Inf. Model. 45, 1256–1266 (2005)CrossRefGoogle Scholar
  48. 48.
    Mazzatorta, P., Vračko, M., Jezierska, A., Benfenati, E.: Modelling toxicity by using supervised Kohonen neural networks. J. Chem. Inf. Comput. Sci. 43, 485–492 (2003)CrossRefGoogle Scholar
  49. 49.
    Vračko, M., Bandelj, V., Barbieri, P., Benfenati, E., Chaudhry, Q., Cronin, M., Devillers, J., Gallegos, A., Gini., G., Gramatica, P., Helma, C., Mazzatorta, P., Neagu, D., Netzeva, T., Pavan, M., Patlewicz, G., Randić, M., Tsakovska, I., Worth, A.: Validation of Counter Propagation Neural Network Models for Predictive Toxicology According to the OECD Principles: a Case Study. SAR QSAR in Environ. Res. 17, 265–284 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Uko Maran
    • 1
  • Sulev Sild
    • 1
  • Paolo Mazzatorta
    • 2
  • Mos Casalegno
    • 3
  • Emilio Benfenati
    • 3
  • Mathilde Romberg
    • 4
  1. 1.Department of Chemistry, University of Tartu, Jakobi 2, Tartu 51014Estonia
  2. 2.Chemical Food Safety Group, Dep. of Quality & Safety, Nestlé Research Center, P.O. Box 44, CH-10000 Lausanne 26Switzerland
  3. 3.Istituto di Ricerche Farmacologiche “Mario Negri”, Via Eritrea 62, 20157 MilanoItaly
  4. 4.School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SANorthern Ireland

Personalised recommendations