Accelerated microRNA-Precursor Detection Using the Smith-Waterman Algorithm on FPGAs

  • Patrick May
  • Gunnar W. Klau
  • Markus Bauer
  • Thomas Steinke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4360)

Abstract

During the last few years more and more functionalities of RNA have been discovered that were previously thought of being carried out by proteins alone. One of the most striking discoveries was the detection of microRNAs, a class of noncoding RNAs that play an important role in post-transcriptional gene regulation. Large-scale analyses are needed for the still increasingly growing amount of sequence data derived from new experimental technologies. In this paper we present a framework for the detection of the distinctive precursor structure of microRNAS that is based on the well-known Smith-Waterman algorithm. By conducting the computation of the local alignment on a FPGA, we are able to gain a substantial speedup compared to a pure software implementation bringing together supercomputer performance and bioinformatics research. We conducted experiments on real genomic data and we found several new putative hits for microRNA precursor structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mattick, J.S.: Challenging the dogma: The hidden layer of non-protein rnas in complex organisms. Bioessays 25, 930–939 (2003)CrossRefGoogle Scholar
  2. 2.
    Mattick, J.S.: RNA regulation: A new genetics? Nature Genetics 5, 316–323 (2004)CrossRefGoogle Scholar
  3. 3.
    Kampa, D. et al.: Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14(3), 331–342 (2004)CrossRefGoogle Scholar
  4. 4.
    Johnson, J.M., Edwards, S., Shoemaker, D., Schadt, E.E.: Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 21(2), 93–102 (2005)CrossRefGoogle Scholar
  5. 5.
    Imanishi, T. et al.: Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLos Biology 2, 856–875 (2004)CrossRefGoogle Scholar
  6. 6.
    Cummins, J.M. et al.: The colorectal microRNAome. PNAS 103(10), 3687–3692 (2006)CrossRefGoogle Scholar
  7. 7.
    Washietl, S., Hofacker, I.L., Lukasser, M., Huttenhofer, A., Stadler, P.F.: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol 23(11), 1383–1390 (2005)CrossRefGoogle Scholar
  8. 8.
    Missal, K., Rose, D., Stadler, P.F.: Non-coding RNAs in ciona intestinalis. Bioinformatics 21(S2), 77–78 (2005)Google Scholar
  9. 9.
    Missal, K. et al.: Prediction of structured non-coding rnas in the genomes of the nematodes caenorhabditis elegans and caenorhabditis briggsae. J. Exp. Zoolog. B. Mol. Dev. Evol. page Epub ahead of print (2006)Google Scholar
  10. 10.
    Ambros, V.: The functions of animal microRNAs. Nature 431, 350–355 (2004)CrossRefGoogle Scholar
  11. 11.
    Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)CrossRefGoogle Scholar
  12. 12.
    Sullivan, C.S., Ganem, D.: MicroRNAs and viral infection. Cell 20, 3–7 (2005)Google Scholar
  13. 13.
    He, L., Hannon, G.: MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004)CrossRefGoogle Scholar
  14. 14.
    Washietl, S., Hofacker, I.L., Stadler, P.F.: Fast and reliable prediction of noncoding RNAs. PNAS 102(7), 2454–2459 (2005)CrossRefGoogle Scholar
  15. 15.
    Rivas, E., Eddy, S.R.: Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2 (2001)Google Scholar
  16. 16.
    Zhang, S., Haas, B., Eskin, E., Bafna, V.: Searching genomes for noncoding RNA using FastR. IEEE/ACM Trans. Comput. Biology Bioinform 2(4), 366–379 (2005)CrossRefGoogle Scholar
  17. 17.
    Klein, R., Eddy, S.: RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics 4 (2003)Google Scholar
  18. 18.
    Hertel, J., Stadler, P.: Hairpins in a haystack: Recognizing microRNA precursors in comparative genomics data. In: ISMB’06, To appear (2006)Google Scholar
  19. 19.
    Dezulian, T., Remmert, M., Palatnik, J., Weigel, D., Huson, D.: Identification of plant microRNA homologs. Bioinformatics 22(3), 359–360 (2006)CrossRefGoogle Scholar
  20. 20.
    Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., Li, Y.: MicroRNA identification based on sequence and structure alignment. Bioinformatics 21(18), 3610–3614 (2005)CrossRefGoogle Scholar
  21. 21.
    Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M., Tuschl, T., van Nimwegen, E., Zavolan, M.: Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6(1), 267 (2005)CrossRefGoogle Scholar
  22. 22.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biology 147, 195–197 (1981)CrossRefGoogle Scholar
  23. 23.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  24. 24.
    Active Motif Inc. TimeLogic DeCypher solutions, http://www.timelogic.com/decypher_algorithms.htmlGoogle Scholar
  25. 25.
    May, P., Bauer, M., Koeberle, C., Klau, G.W.: A computational approach to microRNA detection. Technical Report, Zuse Institute Berlin, 06-44 (2006)Google Scholar
  26. 26.
    LiSA—Library for Structural Alignment, http://www.planet-lisa.netGoogle Scholar
  27. 27.
    Hofacker, I.L.: Vienna RNA secondary structure server. Nucl. Acids Res. 31(13), 3429–3431 (2003)CrossRefGoogle Scholar
  28. 28.
    Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., Enright, A.J.: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34(Database Issue), D140–D144 (2006)Google Scholar
  29. 29.
    Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., Marks, D.S.: MicroRNA targets in Drosophila. Genome Biology 5(1), R1.1–R1.14 (2003)Google Scholar
  30. 30.
    Bafna, V., Tang, H., Zhang, S.: Consensus folding of unaligned RNA sequences revisited. J. Comput. Biol. 13(2), 283–295 (2006)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., Bentwich, Z.: Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics 37(7), 766–770 (2005)CrossRefGoogle Scholar
  32. 32.
    Margerm, S.: Cray XD1 Smith Waterman Accelerator (SWA) FPGA Design. PNR-DD-0025 Issue 0.7, Cray inc. (December 2005)Google Scholar
  33. 33.
    Margerm, S.: Reconfigurable computing in real-world applications. FPGA and Structured ASIC Journal, http://www.fpgajournal.com/articles_2006/pdf/20060207_cray.pdf (February 2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Patrick May
    • 1
    • 2
  • Gunnar W. Klau
    • 3
    • 4
  • Markus Bauer
    • 1
    • 5
  • Thomas Steinke
    • 2
  1. 1.Algorithmic Bioinformatics, Institute of Computer Science, Free University BerlinGermany
  2. 2.Computer Science Research, Zuse Institute BerlinGermany
  3. 3.Mathematics in Life Sciences, Institute of Mathematics, Free University BerlinGermany
  4. 4.DFG Research Center Matheon “Mathematics for key technologies”, BerlinGermany
  5. 5.International Max Planck Research School for Computational Biology, and Scientific Computing, BerlinGermany

Personalised recommendations