Propositional Dynamic Logic as a Logic of Belief Revision

  • Jan van Eijck
  • Yanjing Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5110)


This paper shows how propositional dynamic logic (PDL) can be interpreted as a logic for multi-agent belief revision. For that we revise and extend the logic of communication and change (LCC) of [9]. Like LCC, our logic uses PDL as a base epistemic language. Unlike LCC, we start out from agent plausibilities, add their converses, and build knowledge and belief operators from these with the PDL constructs. We extend the update mechanism of LCC to an update mechanism that handles belief change as relation substitution, and we show that the update part of this logic is more expressive than either that of LCC or that of doxastic/epistemic PDL with a belief change modality. It is shown that the properties of knowledge and belief are preserved under any update, and that the logic is complete.


PDL epistemic dynamic logic belief revision knowledge update 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baltag, A.: A logic for suspicious players: epistemic action and belief-updates in games. Bulletin of Economic Research 54(1), 1–45 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: Bilboa, I. (ed.) Proceedings of TARK 1998, pp. 43–56 (1998)Google Scholar
  4. 4.
    Baltag, A., Smets, S.: Conditional doxastic models: A qualitative approach to dynamic belief revision. Electronic Notes in Theoretical Computer Science (ENTCS) 165, 5–21 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In: Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Texts in Logic and Games. Amsterdam University Press (to appear, 2008)Google Scholar
  6. 6.
    van Benthem, J.: Language, logic, and communication. In: van Benthem, J., Dekker, P., van Eijck, J., de Rijke, M., Venema, Y. (eds.) Logic in Action, pp. 7–25. ILLC (2001)Google Scholar
  7. 7.
    van Benthem, J.: Dynamic logic for belief revision. Journal of Applied Non-Classical Logics 2, 129–155 (2007)CrossRefGoogle Scholar
  8. 8.
    van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. Journal of Applied Non-Classical Logics 14(2) (2004)Google Scholar
  9. 9.
    van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information and Computation 204(11), 1620–1662 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    van Benthem, J.: One is a lonely number: on the logic of communication. Technical Report PP-2002-27, ILLC, Amsterdam (2002)Google Scholar
  11. 11.
    Boutilier, C.: Toward a logic of qualitative decision theory. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proceedings of the 4th International Conference on Principle of Knowledge Representation and Reasoning (KR 1994), pp. 75–86. Morgan Kaufmann, San Francisco (1994)Google Scholar
  12. 12.
    van Ditmarsch, H.: Knowledge Games. PhD thesis, ILLC, Amsterdam (2000)Google Scholar
  13. 13.
    van Ditmarsch, H.P., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    van Eijck, J.: DEMO — a demo of epistemic modelling. In: van Benthem, J., Gabbay, D., Löwe, B. (eds.) Interactive Logic — Proceedings of the 7th Augustus de Morgan Workshop, number 1 in Texts in Logic and Games, pp. 305–363. Amsterdam University Press (2007)Google Scholar
  15. 15.
    Gerbrandy, J.: Bisimulations on planet Kripke. PhD thesis, ILLC (1999)Google Scholar
  16. 16.
    Gray, J.: Notes on database operating systems. In: Bayer, R., Graham, R.M., Seegmuller, G. (eds.) Operating Systems: an advanced course. LNCS, vol. 66, Springer, Berlin (1978)Google Scholar
  17. 17.
    Halpern, J.Y., Moses, Y.O.: Knowledge and common knowledge in a distributed environment. In: Proceedings 3rd ACVM Symposium on Distributed Computing, pp. 50–68 (1984)Google Scholar
  18. 18.
    Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theoretical Computer Science 14, 113–118 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Segerberg, K.: A completeness theorem in the modal logic of programs. In: Traczyck, T. (ed.) Universal Algebra and Applications, pp. 36–46. Polish Science Publications (1982)Google Scholar
  20. 20.
    Stalnaker, R.C.: On logics of knowledge and belief. Philosophical Studies 128, 169–199 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jan van Eijck
    • 1
  • Yanjing Wang
    • 1
  1. 1.Center for Mathematics and Computer Science (CWI)AmsterdamThe Netherlands

Personalised recommendations