Food Chemistry pp 563-616 | Cite as




Much evidence from many civilizations has verified that the meat of wild and domesticated animals has played a significant role in human nutrition since ancient times. In addition to the skeletal muscle of warm-blooded animals, which in a strict sense is “meat”, other parts are also used: fat tissue, some internal organs and blood. Definitions of the term “meat” can vary greatly, corresponding to the intended purpose. From the aspect of food legislation for instance, the term meat includes all the parts of warm-blooded animals, in fresh or processed form, which are suitable for human consumption. In the colloquial language the term meat means skeletal muscle tissue containing more-or-less adhering fat. Some data concerning meat production and consumption are compiled in Tables 12.1–12.3.


Muscle Tissue Meat Product Protein Hydrolysate Myosin Head Meat Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, A. J. (Ed.): Recent advances in the chemistry of meat. The Royal Society of Chemistry, Burlington House: London. 1984Google Scholar
  2. Bailey, A. J.: The Chemistry of Collagen Cross-links and their role in meat texture. Proc. 42nd, Annual Reciprocal Meat Conf., 127 (1989) publ. 1990Google Scholar
  3. Bekhit, A.E.D., Faustman, C.: Metmyoglobin reducing activity. Review. Meat Science 71, 407 (2005)CrossRefGoogle Scholar
  4. Belloque, J., Garcia, M.C., Torre, M., Marina, M.L.: Analysis of soybean proteins in meat products: A review. Crit. Rev. Food Sci. Nutri. 42, 507 (2002)CrossRefGoogle Scholar
  5. Bornstein, P., Sage, H.: Structurally distinct collagen types. Annu. Rev. Biochem. 49, 957 (1980)CrossRefGoogle Scholar
  6. Brander, J., Eyring, G., Richter, B.: Würzen. In: Ullmanns Encyklopädie der technischen Chemie, 4. edn., vol. 24, p. 507, Verlag Chemie: Weinheim. 1983Google Scholar
  7. Cerny, C., Grosch, W.: Quantification of character-impact odour compounds of roasted beef. Z. Lebensm. Unters. Forsch. 196, 417 (1993)CrossRefGoogle Scholar
  8. Drumm, T.D., Spanier, A.M.: Changes in the content of lipid autoxidation and sulfur-containing compounds in cooked beef during storage. J. Agric. Food Chem. 39, 336 (1991)CrossRefGoogle Scholar
  9. Elkhalifa, E.A., Marriott, N.G., Grayson, R.L., Graham, P.P., Perkins, S.K.: Ultrastructural and textural properties of restructured beef treated with a bacterial culture and splenic pulp. Food Microstructure 7, 137 (1988)Google Scholar
  10. Gault, N. F. S.: Structural aspects of raw meat. In: The chemistry of muscle-based foods (Eds.: D.E. Johnston, M.K. Knight, D.A. Ledward) Royal Society of Chemistry, Cambridge, 1992, pp. 79Google Scholar
  11. Geesink, G.H., Kuchay, S. Chrishti, A.H., Koohmaraie, M.: μ-Calpain is essential for postmortem proteolysis of muscle proteins. J. Anim. Sci. 84, 2834 (2006)CrossRefGoogle Scholar
  12. Giddings, G.G.: The basis of color in muscle foods. Crit. Rev. Food Sci. Nutr. 9, 81 (1977)CrossRefGoogle Scholar
  13. Graf, E., Panter, S.S.: Inhibition of WOF development by polyvalent cations. J. Food Sci. 56, 1055 (1991)CrossRefGoogle Scholar
  14. Grundhöfer, F.: Fleisch und Erzeugnisse aus Fleisch. In: Taschenbuch für Lebensmittelchemiker und -technologen, Band 1 (Ed.: W. Frede) Springer-Verlag, Berlin, 1991, pp. 249Google Scholar
  15. Guth, H., Grosch, W.: Dependence of the 12-methyltridecanal concentration in beef on the age of the animal. Z. Lebensm. Unters. Forsch. 201, 25 (1995)CrossRefGoogle Scholar
  16. Gutschmidt, J.: The storage life of frozen chicken with regard to the temperature in the cold chain. Lebensm. Wiss. Technol. 7, 139 (1974)Google Scholar
  17. Hamm, R.: Kolloidchemie des Fleisches. Verlag Paul Parey: Berlin. 1972Google Scholar
  18. Hamm, R., Masic, D.: Routinemethode zur Unterscheidung zwischen frischer Leber und aufgetauter Gefrierleber. Fleischwirtschaft 55, 242 (1975)Google Scholar
  19. Hawkes, R.: Identification of Concanavalin A-binding proteins after sodium dodecyl sulfate-gelelectrophoresis and protein blotting. Anal. Biochem. 123, 143 (1982)CrossRefGoogle Scholar
  20. Herrera-Mendez, C.H., Becila, S., Boudjellal, A. Quali, A.: Meat aging: Reconsideration of the current concept. Trends Food Sci. Technol. 17, 394 (2006)CrossRefGoogle Scholar
  21. Herrmann, Ch., Thoma, H., Kotter, L.: Zur direkten Bestimmung von Muskeleiweiß in Fleischerzeugnissen. Fleischwirtschaft 56, 87 (1976)Google Scholar
  22. Hornung, H.H.: Schlachtvieh. In: Lebensmitteltechnologie (Ed.: R. Heiss) Springer-Verlag, Berlin, 1988, pp. 46Google Scholar
  23. Honikel, K.O.: Vom Fleisch zum Produkt. Fleischwirtschaft 84, 228 (2004)Google Scholar
  24. Igene, J. O., Yamauchi, K., Pearson, A. M., Gray, J. I., Aust, S.D.: Mechanisms by which nitrite inhibits the development of warmed-over flavour (WOF) in cured meat. Food Chem. 18, 1 (1985)CrossRefGoogle Scholar
  25. Ingerowski, G.H., Stan, H.-J.: Nachweis von Östrogen-Rückständen in Fleisch mit Hilfe des cytoplasmatischen Östrogenrezeptors aus Rinderuterus. Dtsch. Lebensm. Rundsch. 74, 1 (1978)Google Scholar
  26. Johnston, D.E., Knight, M.K., Ledward, D.A.: The chemistry of muscle-based foods. Royal Society of Chemistry, Cambridge, 1992Google Scholar
  27. Kaiser, K.-P., Matheis G., Kmita-Dürrmann, Ch., Belitz, H.-D.: Identifizierung der Tierart bei Fleisch, Fisch und abgeleiteten Produkten durch Proteindifferenzierung mit elektrophoretischen Methoden. I. Rohes Fleisch und roher Fisch. Z. Lebensm. Unters. Forsch. 170, 334 (1980 a)CrossRefGoogle Scholar
  28. Kaiser, K.-P., Matheis G., Kmita-Dürrmann, Ch., Belitz, H.-D.: Proteindifferenzierung mit elektrophoretischen Methoden bei Fleisch, Fisch und abgeleiteten Produkten. II. Qualitative and quantitative Analyse roher binärer Fleischmischungen durch isoelektrische Fokussierung in Polyacrylamidgel. Z. Lebensm. Unters. Forsch. 171, 415 (1980b)CrossRefGoogle Scholar
  29. Karlson, P.: Kurzes Lehrbuch der Biochemie. 10. edn., Georg Thieme Verlag: Stuttgart. 1977Google Scholar
  30. Kerler, J., Grosch, W.: Odorants contributing to warmed-over flavor (WOF) of refrigerated cooked beef. J. Food. Sci. 61, 1271 (1996)CrossRefGoogle Scholar
  31. Kerscher, R., Grosch, W.: Comparison of the aromas of cooked beef, pork and chicken. In: Frontiers of Flavour Science (eds.: P. Schieberle, K.-H. Engel) Deutsche Forschungsanstalt für Lebensmittelchemie, Garching, 2000, pp. 17Google Scholar
  32. Kerscher, R., Nürnberg, K., Voigt, J., Schieberle, P., Grosch, W.: Occurrence of 12-methyltridecanal in microorganisms and physiological samples isolated from beef. J. Agric. Food Chem. 48, 2387 (2000)CrossRefGoogle Scholar
  33. Ladikos, D., Lougovois, V.: Lipid oxidation in muscle foods: a review. Food Chem. 35, 295 (1990)CrossRefGoogle Scholar
  34. Lawrie, R. A.: The conversion of muscle to meat. In: Recent advances in food science (Eds.: Hawthorn, J., Leitch, J.M.), Vol. I, p. 68, Butterworth: London. 1962Google Scholar
  35. Lawrie, R.A.: Meat science, 4th edn., Pergamon Press: Oxford. 1985Google Scholar
  36. Ledward, D. A.: A note on the nature of the haematin pigments present in freeze dried and cooked beef. Meat Sci. 21, 231 (1987)CrossRefGoogle Scholar
  37. Lehninger, A. L.: Biochemie. 2nd edn., Verlag Chemie: Weinheim. 1977Google Scholar
  38. Manley, C.H., Ahmedi, S.: The development of process flavors. Trends Food Sci. Technol. 6, 46 (1995)CrossRefGoogle Scholar
  39. Mottram, D.S.: Some observations on the role of lipids in meat flavour. In: Sensory quality in foods and beverages (Eds.: Williams. A.A., Atkin, R.K.), p. 394, Ellis Horwood Ltd.: Chichester. 1983Google Scholar
  40. Müller, W.-D.: Fleischverarbeitung. In: Taschenbuch für Lebensmittelchemiker und -technologen, Band 2 (Ed.: D. Osteroth) Springer-Verlag, Berlin, 1991, pp. 387Google Scholar
  41. Müller, W.-D.: Erhitzen und Räuchern von Kochwurst und Kochpökelware. Fleischwirtschaft 69, 308 (1989)Google Scholar
  42. Pearson, A.M., Young, R.B.: Muscle and meat biochemistry. Academic Press: San Diego, CA. 1989Google Scholar
  43. Piasecki, A., Ruge, A., Marquardt, H.: Malignant transformation of mouse M2-fibroblasts by glycerol chlorohydrines contained in protein hydrolysates and commercial food. Arzneim.-Forsch./Drug. Res. 40, 1054 (1990)Google Scholar
  44. Potthast, K., Hamm, R.: Biochemie des DFD-Fleisches. Fleischwirtschaft 56, 978 (1976)Google Scholar
  45. Price, J.F., Schweigert, B. S. (Eds.): The science of meat and meat products. 2nd edn., W. H. Freeman: San Francisco, 1971Google Scholar
  46. Ruiz-Capillas, C., Jimenez-Colmenero, F.: Biogenic amines in meat and meat products. Crit. Rev. Food Sci. Nutr. 44, 489 (2004)CrossRefGoogle Scholar
  47. Sargent, J. A.: The application of cold stage scanning electron microscopy to food research. Food Microstructure 7, 123 (1988)Google Scholar
  48. Scanlan, R.A.: N-Nitrosamines in foods. Crit. Rev. Food Technol. 5, 357 (1974)Google Scholar
  49. Schlichtherle-Cerny, H., Grosch, W.: Evaluation of taste compounds of stewed beef juice. Z. Lebensm. Unters. Forsch. A 207, 369 (1998)CrossRefGoogle Scholar
  50. Schormüller, J. (Ed.): Handbuch der Lebensmittelchemie. Vol. I, Springer-Verlag: Berlin. 1965Google Scholar
  51. Schultz, H.W., Anglemier, A.F. (Eds.): Proteins and their reactions. AVI Publ. Co.: Westport, Conn. 1964Google Scholar
  52. Schwägele, F.: Struktur und Funktion des Muskels. Fleischwirtschaft 84, 168 (2004).Google Scholar
  53. Shahidi, F.: Flavor of meat and meat products. Blackie Academic & Professional, London, 1994Google Scholar
  54. Silhankova, L., Smid, F., Cerna, M., Davidek, J., Velisek, J.: Mutagenicity of glycerol chlorohydrines and of their esters with higher fatty acids present in protein hydrolysates. Mutation Research 103, 77 (1982)CrossRefGoogle Scholar
  55. Steinhart, H.: Chemische Kriterien zur Beurteilung der Fleischqualität. Lebensmittelchemie 46, 61 (1992)Google Scholar
  56. Thanh, V.H., Shibasaki, K.: Major proteins of soybean seeds. A straightforward fractionation and their characterization. J. Agric. Food Chem. 24, 1117 (1976)CrossRefGoogle Scholar
  57. Tóth, L.: Chemie der Räucherung. Verlag Chemie: Weinheim, 1982 Google Scholar
  58. Traub, W., Piez, K. A.: The chemistry and structure of collagen. Adv. Protein Chem. 25, 243 (1971)CrossRefGoogle Scholar
  59. Van Rillaer, W., Beernaert, H.: Determination of residual 1,3-dichloro-2-propanol in protein hydrolysates by capillary gas chromatography. Z. Lebensm. Unters. Forsch. 188, 343 (1989)CrossRefGoogle Scholar
  60. Velisek, J., Davidek, J., Davidek, T., Hamburg, A.: 3-Chloro-1,2-propanediol derived amino alcohol in protein hydrolysates. J. Food Sci. 56, 136 (1991)CrossRefGoogle Scholar
  61. Velisek, J., Davidek, J., Kubelka, V, Janisek, G., Svobodava, Z., Simicova, Z.: New chlorine-containing organic compounds in protein hydrolysates. J. Agric. Food Chem. 28, 1142 (1980)CrossRefGoogle Scholar
  62. Velisek, J., Davidek, J., Kubelka, V.: Formation of Δ3.5-diene and 3-chloro Δ5-ene analogues of sterols in protein hydrolysates. J. Agric. Food Chem. 34, 660 (1986)CrossRefGoogle Scholar
  63. Warendorf, T., Belitz, H.-D.: Zum Geschmack von Fleischbrühe. 2. Sensorische Analyse der Inhaltsstoffe und Imitation einer Brühe. Z. Lebensm. Unters. Forsch. 195, 209 (1992)CrossRefGoogle Scholar
  64. Weenen, H., Kerler, J., van der Ven, J. G. M.: The Maillard reaction in flavour formation. In: Flavours and fragrances (Ed. K. A. Swift) The Royal Society of Chemistry, Cambridge, 1997, pp. 153Google Scholar
  65. Wittkowski, R.: Phenole im Räucherrauch. VCH Verlagsgesellschaft: Weinheim. 1985Google Scholar
  66. Wittmann, R.: Chlorpropandiole in Lebensmitteln. Lebensmittelchemie 45, 89 (1991)Google Scholar
  67. Wykle, B., Gillett, T.A., Addis, P.B.: Myoglobin heterogeneity in pigs with PSE and normal muscle by an improved isoelectric focusing technique. J. Animal. Sci. 47, 1260 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Personalised recommendations