MicroPsi: Contributions to a Broad Architecture of Cognition

  • Joscha Bach
  • Colin Bauer
  • Ronnie Vuine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4314)

Abstract

The Psi theory of human action regulation is a candidate for a cognitive architecture that tackles the problem of the interrelation of motivation and emotion with cognitive processes. We have transferred this theory into a cognitive modeling framework, implemented as an AI architecture, called MicroPsi. Here, we describe the main assumptions of the Psi theory and summarize a neural prototyping algorithm that matches perceptual input to hierarchical declarative representations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Detje, F.: Handeln erklären. DUV, Wiesbaden (1999)Google Scholar
  2. 2.
    Clark, A., Grush, R.: Towards a Cognitive Robotics. Adaptive Behavior 7(1), 5–16 (1999)CrossRefGoogle Scholar
  3. 3.
    Dörner, D.: Eine Systemtheorie der Motivation. Memorandum Lst. Psychologie II Universität Bamberg, 2,9 (1994)Google Scholar
  4. 4.
    Dörner, D.: Bauplan für eine Seele. Rowohlt, Reinbeck (1999)Google Scholar
  5. 5.
    Dörner, D., et al.: Die Mechanik des Seelenwagens. Eine neuronale Theorie der Handlungsregulation. Hans Huber, Bern (2002)Google Scholar
  6. 6.
    Dörner, D.: Die kognitive Organisation beim Problemlösen. Versuche zu einer kybernetischen Theorie der elementaren Informations-verarbeitungsprozesse beim Denken. Kohlhammer, Bern (1974)Google Scholar
  7. 7.
    Barsalou, L.W.: Perceptual Symbol Systems. Behavioral and Brain Sciences 22(4), 577–660 (1999)Google Scholar
  8. 8.
    Anderson, J.R., Lebiere, C.: The atomic components of thought. Erlbaum, Mahwah (1998)Google Scholar
  9. 9.
    Laird, J.E., Newell, A., Rosenbloom, P.J.: Soar: An architecture for general intelligence. Artificial Intelligence 33(1), 1–64 (1987)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Sun, R.: Cognition and Multi-Agent Interaction, pp. 79–103. Cambridge University Press, Cambridge (2005)Google Scholar
  11. 11.
    Detje, F.: Comparison of the PSI-theory with human behaviour in a complex task. In: Taatgen, N., Aasman, J. (eds.) Proceedings of the Third International Conference on Cognitive Modelling, pp. 86–93. Universal Press, Veenendaal (2000)Google Scholar
  12. 12.
    Dörner, D.: The Mathematics of Emotion. In: Proceedings of ICCM-5, International Conference on Cognitive Modeling, Bamberg, Germany (2003)Google Scholar
  13. 13.
    Ritter, F.E., et al.: Techniques for Modeling Human Performance in Synthetic Environments: A Supplementary Review. Human Systems Information Analysis Center, State of the Art Report (2003)Google Scholar
  14. 14.
    Piaget, J.: The construction of reality in the child. Basic Books, New York (1954)Google Scholar
  15. 15.
    Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artificial Intelligence 70(1-2), 119–165 (1994)CrossRefMATHGoogle Scholar
  16. 16.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shockgraphs. In: IEEE International Conference on Computer Vision, pp. 755–762 (2001)Google Scholar
  17. 17.
    Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. IEEE Transaction on Pattern Analysis and Machine Intelligence 21, 1105–1120 (1999)CrossRefGoogle Scholar
  18. 18.
    Schädler, K., Wysotzki, F.: Comparing structures using a hopfield-style neural network. Applied Intelligence 11, 15–30 (1999)CrossRefGoogle Scholar
  19. 19.
    Schädler, K., Wysotzki, F.: A connectionist approach to structural similarity determination as a basis of clustering, classification and feature detection. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 254–264. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Siddiqi, K., et al.: Shock graphs and shape matching. IEEE International Journal on Computer Vision, 222–229 (1998)Google Scholar
  21. 21.
    Macrini, D.: Indexing and matching for view-based 3-d object recognition using shock graphs. Master’s thesis, University of Toronto (2003)Google Scholar
  22. 22.
    Shokoufandeh, A., Dickinson, S.J.: A Unified Framework for Indexing and Matching Hierarchical Shape Structures. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 28–46. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joscha Bach
    • 1
  • Colin Bauer
    • 2
  • Ronnie Vuine
    • 3
  1. 1.University of Osnabrück, Institute for Cognitive Science, OsnabrückGermany
  2. 2.Technical University of Berlin, Department for Computer Science, BerlinGermany
  3. 3.Humboldt-University of Berlin, Institute for Computer Science, BerlinGermany

Personalised recommendations