MicroPsi: Contributions to a Broad Architecture of Cognition

  • Joscha Bach
  • Colin Bauer
  • Ronnie Vuine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4314)


The Psi theory of human action regulation is a candidate for a cognitive architecture that tackles the problem of the interrelation of motivation and emotion with cognitive processes. We have transferred this theory into a cognitive modeling framework, implemented as an AI architecture, called MicroPsi. Here, we describe the main assumptions of the Psi theory and summarize a neural prototyping algorithm that matches perceptual input to hierarchical declarative representations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Detje, F.: Handeln erklären. DUV, Wiesbaden (1999)Google Scholar
  2. 2.
    Clark, A., Grush, R.: Towards a Cognitive Robotics. Adaptive Behavior 7(1), 5–16 (1999)CrossRefGoogle Scholar
  3. 3.
    Dörner, D.: Eine Systemtheorie der Motivation. Memorandum Lst. Psychologie II Universität Bamberg, 2,9 (1994)Google Scholar
  4. 4.
    Dörner, D.: Bauplan für eine Seele. Rowohlt, Reinbeck (1999)Google Scholar
  5. 5.
    Dörner, D., et al.: Die Mechanik des Seelenwagens. Eine neuronale Theorie der Handlungsregulation. Hans Huber, Bern (2002)Google Scholar
  6. 6.
    Dörner, D.: Die kognitive Organisation beim Problemlösen. Versuche zu einer kybernetischen Theorie der elementaren Informations-verarbeitungsprozesse beim Denken. Kohlhammer, Bern (1974)Google Scholar
  7. 7.
    Barsalou, L.W.: Perceptual Symbol Systems. Behavioral and Brain Sciences 22(4), 577–660 (1999)Google Scholar
  8. 8.
    Anderson, J.R., Lebiere, C.: The atomic components of thought. Erlbaum, Mahwah (1998)Google Scholar
  9. 9.
    Laird, J.E., Newell, A., Rosenbloom, P.J.: Soar: An architecture for general intelligence. Artificial Intelligence 33(1), 1–64 (1987)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Sun, R.: Cognition and Multi-Agent Interaction, pp. 79–103. Cambridge University Press, Cambridge (2005)Google Scholar
  11. 11.
    Detje, F.: Comparison of the PSI-theory with human behaviour in a complex task. In: Taatgen, N., Aasman, J. (eds.) Proceedings of the Third International Conference on Cognitive Modelling, pp. 86–93. Universal Press, Veenendaal (2000)Google Scholar
  12. 12.
    Dörner, D.: The Mathematics of Emotion. In: Proceedings of ICCM-5, International Conference on Cognitive Modeling, Bamberg, Germany (2003)Google Scholar
  13. 13.
    Ritter, F.E., et al.: Techniques for Modeling Human Performance in Synthetic Environments: A Supplementary Review. Human Systems Information Analysis Center, State of the Art Report (2003)Google Scholar
  14. 14.
    Piaget, J.: The construction of reality in the child. Basic Books, New York (1954)Google Scholar
  15. 15.
    Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artificial Intelligence 70(1-2), 119–165 (1994)CrossRefMATHGoogle Scholar
  16. 16.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shockgraphs. In: IEEE International Conference on Computer Vision, pp. 755–762 (2001)Google Scholar
  17. 17.
    Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. IEEE Transaction on Pattern Analysis and Machine Intelligence 21, 1105–1120 (1999)CrossRefGoogle Scholar
  18. 18.
    Schädler, K., Wysotzki, F.: Comparing structures using a hopfield-style neural network. Applied Intelligence 11, 15–30 (1999)CrossRefGoogle Scholar
  19. 19.
    Schädler, K., Wysotzki, F.: A connectionist approach to structural similarity determination as a basis of clustering, classification and feature detection. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 254–264. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Siddiqi, K., et al.: Shock graphs and shape matching. IEEE International Journal on Computer Vision, 222–229 (1998)Google Scholar
  21. 21.
    Macrini, D.: Indexing and matching for view-based 3-d object recognition using shock graphs. Master’s thesis, University of Toronto (2003)Google Scholar
  22. 22.
    Shokoufandeh, A., Dickinson, S.J.: A Unified Framework for Indexing and Matching Hierarchical Shape Structures. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 28–46. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joscha Bach
    • 1
  • Colin Bauer
    • 2
  • Ronnie Vuine
    • 3
  1. 1.University of Osnabrück, Institute for Cognitive Science, OsnabrückGermany
  2. 2.Technical University of Berlin, Department for Computer Science, BerlinGermany
  3. 3.Humboldt-University of Berlin, Institute for Computer Science, BerlinGermany

Personalised recommendations