On the Scalability of Description Logic Instance Retrieval

  • Ralf Möller
  • Volker Haarslev
  • Michael Wessel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4314)

Abstract

Although description logic systems can adequately be used for representing and reasoning about incomplete information (e.g., for John we know he is French or Italian), in practical applications it can be assumed that (only) for some tasks the expressivity of description logics really comes into play whereas for building complete applications, it is often necessary to effectively solve instance retrieval problems with respect to largely deterministic knowledge. In this paper we present and analyze the main results we have found about how to contribute to this kind of scalability problem. We assume familiarity with description logics in general and tableau provers in particular.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  3. 3.
    Bechhofer, S., Horrocks, I., Turi, D.: The OWL instance store: System description. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Calvanese, D., et al.: Data complexity of query answering in description logics. In: Proc. of the 2005 Description Logic Workshop (DL 2005). CEUR Electronic Workshop Proceedings (2005), http://ceur-ws.org/
  5. 5.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pp. 149–158 (1998)Google Scholar
  6. 6.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Boook. Prentice-Hall, Englewood Cliffs (2092)Google Scholar
  7. 7.
    Glimm, B., Horrocks, I.: Handling cyclic conjunctive queries. In: Proc. of the 2005 Description Logic Workshop (DL 2005). CEUR Workshop Proceedings, vol. 147 (2005), http://ceur-ws.org/
  8. 8.
    Guo, Y., Heflin, J., Pan, Z.: Benchmarking DAML+OIL repositories. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 613–627. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Guo, Y., Pan, Z., Heflin, J.: An evaluation of knowledge base systems for large OWL datasets. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Haarslev, V., Möller, R.: Optimization techniques for retrieving resources described in OWL/RDF documents: First results. In: Ninth International Conference on the Principles of Knowledge Representation and Reasoning, KR 2004, Whistler, BC, Canada, June 2-5, 2004, pp. 163–173 (2004)Google Scholar
  11. 11.
    Haarslev, V., Möller, R., Turhan, A.-Y.: Exploiting pseudo models for tbox and abox reasoning in expressive description logics. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Haarslev, V., Möller, R., Wessel, M.: The Description Logic \(\mathcal{ALCNH}_{R+}\) Extended with Concrete Domains: A Practically Motivated Approach. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 29–44. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Horrocks, I.: Optimising Tableaux Decision Procedures for Description Logics. PhD thesis, University of Manchester (1997)Google Scholar
  14. 14.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). Technical report, University of Manchester (2006)Google Scholar
  15. 15.
    Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 285–296 (2000)Google Scholar
  16. 16.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic \(\mathcal{SHIQ}\). In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 482–496. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Horrocks, I., Tessaris, S.: A conjunctive query language for description logic ABoxes. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pp. 399–404 (2000)Google Scholar
  18. 18.
    Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis, Univ. Karlsruhe (2006)Google Scholar
  19. 19.
    Motik, B., Volz, R., Maedche, A.: Optimizing query answering in description logics using disjunctive deductive databases. In: Proceedings of the 10th International Workshop on Knowledge Representation Meets Databases (KRDB-2003), pp. 39–50 (2003)Google Scholar
  20. 20.
    Wessel, M., Möller, R.: A high performance semantic web query answering engine. In: Proc. of the 2005 Description Logic Workshop (DL 2005). CEUR Electronic Workshop Proceedings (2005), http://ceur-ws.org/
  21. 21.
    Zhang, Z.: Ontology query languages for the semantic web: A performance evaluation. Master’s thesis, University of Georgia (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ralf Möller
    • 1
  • Volker Haarslev
    • 2
  • Michael Wessel
    • 1
  1. 1.Hamburg University of Technology 
  2. 2.Concordia University, Montreal 

Personalised recommendations