Towards the Computation of Stable Probabilistic Model Semantics

  • Emad Saad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4314)

Abstract

In [22], a stable model semantics extension of the language of hybrid probabilistic logic programs [21] with non-monotonic negation, normal hybrid probabilistic programs (NHPP), has been developed by introducing the notion of stable probabilistic model semantics. It has been shown in [22] that the stable probabilistic model semantics is a natural extension of the stable model semantics for normal logic programs and the language of normal logic programs is a subset of the language NHPP. This suggests that efficient algorithms and implementations for computing the stable probabilistic model semantics for NHPP can be developed by extending the efficient algorithms and implementation for computing the stable model semantics for normal logic programs, e.g., SMODELS [17]. In this paper, we explore an algorithm for computing the stable probabilistic model semantics for NHPP along with its auxiliary functions. The algorithm we develop is based on the SMODELS [17] algorithms. We show the soundness and completeness of the proposed algorithm. We provide the necessary conditions that these auxiliary functions have to satisfy to guarantee the soundness and completeness of the proposed algorithm. This algorithm is the first to develop for studying computational methods for computing the stable probabilistic models semantics for hybrid probabilistic logic programs with non-monotonic negation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C., et al.: Probabilistic reasoning with answer sets. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Bell, C., et al.: Mixed integer programming methods for computing Nonmonotonic Deductive Databases. Journal of ACM 41(6), 1178–1215 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, W.D., Warren, D.S.: Computation of stable models and its integration with logical query processing. IEEE Transaction on Knowledge and Data Engineering 8(5), 742–757 (1996)CrossRefGoogle Scholar
  4. 4.
    Cholewinski, P., et al.: Computing with default logic. Artificial Intelligence 112(1-2), 105–146 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic program. Journal of Logic Programming 43(3), 187–250 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dekhtyar, M., Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs: algorithms and complexity. In: Uncertainty in Artificial Intelligence Conference, pp. 160–169 (1999)Google Scholar
  7. 7.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn formulae. Journal of Logic Programming 1(3), 267–284 (1984)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal of Computer and System Sciences 47(1), 185–221 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)MATHCrossRefGoogle Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Fifth International Conference and Symposium on Logic Programming, pp. 1070–1080 (1988)Google Scholar
  11. 11.
    Lakshmanan, L.V.S., Sadri, F.: On a theory of probabilistic deductive databases. Journal of Theory and Practice of Logic Programming 1(1), 5–42 (2001)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lifschitz, V.: Foundations of logic programming. In: Principles of Knowledge Representation, pp. 69–127. CSLI Publications, Stanford (1996)Google Scholar
  13. 13.
    Lu, J.J., Leach, S.M.: Computing annotated logic programs. In: van Hentenryck, P. (ed.) International Conference on Logic Programming, MIT press, Cambridge (1994)Google Scholar
  14. 14.
    Marek, W., Truszczynski, M.: Autoepistemic logic. Journal of ACM 38(3), 588–619 (1991)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation 101(2), 150–201 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive databases. Information and Computation 110(1), 42–83 (1994)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Niemela, I., Simons, P.: Efficient implementation of the well-founded and stable model semantics. In: Joint International Conference and Symposium on Logic Programming, pp. 289–303 (1996)Google Scholar
  18. 18.
    Niemela, I., Simons, P., Soininen, T.: Stable model semantics of weight constraint rules. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 317–331. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Saad, E.: Hybrid probabilistic programs with non-monotonic negation: semantics and algorithms. Ph.D. thesis, New Mexico State University (May 2005)Google Scholar
  21. 21.
    Pontelli, E., Saad, E.: Towards a More Practical Hybrid Probabilistic Logic Programming Framework. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 67–82. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Pontelli, E., Saad, E.: Hybrid Probabilistic Logic Programs with Non-monotonic Negation. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 204–220. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Subrahmanian, V.S., Nau, D.S., Vago, C.: wfs + branch and bound = stable models. IEEE Transaction on Knowledge and Data Engineering 7(3), 362–377 (1995)CrossRefGoogle Scholar
  24. 24.
    Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: International Workshop on Nonmonotonic Reasoning (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Emad Saad
    • 1
  1. 1.College of Computer Science and Information Technology, Abu Dhabi University, Abu DhabiU.A.E.

Personalised recommendations