A Path Following Algorithm for Graph Matching

  • Mikhail Zaslavskiy
  • Francis Bach
  • Jean-Philippe Vert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5099)

Abstract

We propose a convex-concave programming approach for the labelled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is aslo a complex combinatorial problem. We therefore construct an approximation of the concave problem solution by following a solution path of the convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. The algorithm is compared with some of the best performing graph matching methods on three datasets: simulated graphs, QAPLib and handwritten chinese characters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Filatov, A., Gitis, A., Kil, I.: Graph-based handwritten digit string recognition. In: Third International Conference on Document Analysis and Recognition (ICDAR 1995), pp. 845–848 (1995)Google Scholar
  2. 2.
    Carcassoni, M., Hancock, R.E.: Spectral correspondance for point pattern matching. Pattern Recognition 36, 193–204 (2002)CrossRefGoogle Scholar
  3. 3.
    Schellewald, C., Schnor, C.: Probabilistic subgraph matching based on convex relaxation. Lecture notes in computer science, pp. 171–186. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. Research in Computantional Molecular Biology 4453, 16–31 (2007)CrossRefGoogle Scholar
  5. 5.
    Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. Transaction on pattern analysis and machine intelligence 10 (1988)Google Scholar
  6. 6.
    Shapiro, L., Brady, J.: Feature-based correspondance: an eigenvector approach. Image and vision computing 10, 283–288 (1992)CrossRefGoogle Scholar
  7. 7.
    Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. TPAMI 24 (2004)Google Scholar
  8. 8.
    Almohamad, H., Duffuaa, S.O.: A linear programming approach for the weighted graph matching problem. TPAMI 15 (1993)Google Scholar
  9. 9.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. Transaction on pattern analysis and machine intelligence 18 (1996)Google Scholar
  10. 10.
    Cremers, D., Kohlberger, T., Schnor, C.: Evaluation of convex optimization techniques for the graph-matching problem in computer vision. Patter Recogn. 2191 (2001)Google Scholar
  11. 11.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. Transaction on pattern analysis and machine intelligence 24 (2002)Google Scholar
  12. 12.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. International journal of pattern recognition and AI 18, 265–298 (2004)CrossRefGoogle Scholar
  13. 13.
    Zaslavskiy, M., Bach, F., Vert, J.P.: Path following algorithm for graph matching problem. arXiv:0801.3654v1 (2008)Google Scholar
  14. 14.
    Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics Quarterly 3, 95–110 (1956)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Chung, F.R.K.: Spectral Graph Theory. Americal Mathematical Society (1997)Google Scholar
  16. 16.
    Golub, G.H., Loan, C.F.V.: Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  17. 17.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. PHYSICAL REVIEW 64 (2001)Google Scholar
  18. 18.
    Cela, E.: Qaudratuc assignment problem library (2007), http://www.opt.math.tu-graz.ac.at/qaplib/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mikhail Zaslavskiy
    • 1
    • 3
    • 4
  • Francis Bach
    • 2
  • Jean-Philippe Vert
    • 1
    • 4
  1. 1.The Center for Computational Biology, École des Mines de Paris, ParisTechFontainebleauFrance
  2. 2.INRIA-Willow Project, École Normale SupérieureParisFrance
  3. 3.The Center for Mathematical Morphology, École des Mines de Paris, ParisTechFontainebleauFrance
  4. 4.Institut Curie, Section Recherche, INSERM U900ParisFrance

Personalised recommendations