Combination of Image Registration Algorithms for Patient Alignement in Proton Beam Therapy
Abstract
We propose a measure of patient alignment in a video by combining different image representations : grey level, edges, and a set of feature points. When patient head is correctly positionned, a reference image with its ellipse is stored as a template of correct alignment. Edges detection results in a second template of the correct head location. Corners inside the ellipse are detected and tracked: a set of N feature points composes a third template. Template matching computes a measure of similarity between a representation of the reference image and a window sliding around the reference location. Similarity with these three models are combined by the product rule. Location of window the most similar to the templates gives the translation T of the reference model in the image plane. This measure of patient misalignment could avoid X-ray verification of patient alignment, reducing patient dose and duration of treatment sessions.
Keywords
Proton beam therapy expert combination template matching feature points color model camshiftReferences
- 1.Bradsky, G.: Computer Vision Face Tracking For Use in a Perceptual User Interface. Intel Technology Journal (1998)Google Scholar
- 2.Bouguet, J.-Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker: Description of the algorithm. Technical report, Intel Corporation Microprocessor Research Labs (2000)Google Scholar
- 3.Shi, J., Tomasi, C.: Good Features to Track. In: Conference on Computer Vision and Pattern Recognition (1994)Google Scholar
- 4.Milgram, M., Belaroussi, R., Prevost, L.: Multi-stage Combination of Geometric and Colorimetric Detectors for Eyes Localization. In: 13th International Conference Image Analysis and Processing, pp. 1010–1017 (2005)Google Scholar
- 5.Kittler, J., Hatef, M., Duin, R., Matas, J.: On Combining Classifiers. Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
- 6.Pinault, S., Morel, G., Ferrand, R., Auger, M., Mabit, C.: Using an external registration system for daily patient repositioning in protontherapy. In: International Conference on Intelligent Robots and Systems (2007)Google Scholar
- 7.Fuller, D.C., Thomas, C.R., Schwartz, S., Golden, N., Ting, J., Wong, A., Erdogmus, D., Scarbrough, T.J.: Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting. Phys. Med. Biol. 51(19), 4981–4993 (2006)CrossRefGoogle Scholar
- 8.Baronia, G., Ferrignoa, G., Orecchia, R., Pedotti, A.: Real-time three-dimensional motion analysis for patient positioning verification. Radiotherapy and Oncology 54 (2000)Google Scholar
- 9.de Kock, E.A., Muller, N., Maartens, D., van der Merwe, J., Muller, D., van Rooyen, R., van der Merwe, A., Eksteen, J., von Hoesslin, N., Wagener, D., Hough, J.: Integrating an industrial robot and multi-camera computer vision systems into a patient positioning system for high-precision radiotherapy. In: ISR Symposium (2004)Google Scholar
- 10.Harms, W., Schoffel, P.J., Sroka-Perez, G., Schlegel, W., Karger, C.P.: Accuracy of a commercial optical 3D surface imaging system for rea- lignment of patients for radiotherapy of the thorax. Phys. Med. Biol. 52(5), 3949–3963 (2007)Google Scholar
- 11.Tanga, J., Dieterichb, S., Clearya, K.: Respiratory Motion Tracking of Skin and Liver in Swine for CyberKnife Motion Compensation. In: SPIE Medical Imaging (2004)Google Scholar
- 12.Verellen, D., Soete, G., Linthout, N., Van Acker, S., De Roover, P., Van de Steene, J., Vinh-Hung, V., Storme, G.: Quality assurance of a system for improved target localization and patient setup that combines real time infrared tracking and stereoscopic Xray imaging. Radiotherapy and Oncology 67(5), 129–141 (2003)CrossRefGoogle Scholar
- 13.Gerszten, P.C., Ozhasoglu, C., Burton, S.A., Welch, W.C., Vogel, W.J., Atkins, B.A., Kalnicki, S.: CyberKnife frameless single fraction ste- reotactic radiosurgery for tumors of the sacrum. Neurosurg. 15(2) (2003)Google Scholar
- 14.Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24(4), 325–376 (1992)CrossRefGoogle Scholar
- 15.Valet, L., Mauris, G., Bolon, P.: A Statistical Overview of recent literature in Information Fusion. IEEE Magazine on Aeronautics and Electronics Systems 16(3), 7–14 (2001)CrossRefGoogle Scholar