On Trade-Offs in External-Memory Diameter-Approximation

  • Ulrich Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5124)


Computing diameters of huge graphs is a key challenge in complex network analysis. However, since exact diameter computation is computationally too costly, one typically relies on approximations. In fact, already a single BFS run rooted at an arbitrary vertex yields a factor two approximation. Unfortunately, in external-memory, even a simple graph traversal like BFS may cause an unacceptable amount of I/O-operations. Therefore, we investigate alternative approaches with worst-case guarantees on both I/O-complexity and approximation factor.


Short Path Span Tree Undirected Graph Input Graph Master Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abello, J., Buchsbaum, A., Westbrook, J.: A functional approach to external graph algorithms. Algorithmica 32(3), 437–458 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Communications of the ACM 31(9), 1116–1127 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Arge, L., Brodal, G., Toma, L.: On external-memory MST, SSSP and multi-way planar graph separation. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 433–447. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Arge, L., Meyer, U., Toma, L.: External memory algorithms for diameter and all-pairs shortest-paths on sparse graphs. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 146–157. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Atallah, M., Vishkin, U.: Finding Euler tours in parallel. Journal of Computer and System Sciences 29(30), 330–337 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boitmanis, K., Freivalds, K., Ledins, P., Opmanis, R.: Fast and simple approximation of the diameter and radius of a graph. In: Àlvarez, C., Serna, M.J. (eds.) WEA 2006. LNCS, vol. 4007, pp. 98–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Buchsbaum, A., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.: On external memory graph traversal. In: Proc. 11th Ann. Symposium on Discrete Algorithms (SODA), pp. 859–860. ACM-SIAM (2000)Google Scholar
  8. 8.
    Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamasia, R., Vengroff, D.E., Vitter, J.S.: External memory graph algorithms. In: Proc. 6th Ann.Symposium on Discrete Algorithms (SODA), pp. 139–149. ACM-SIAM (1995)Google Scholar
  9. 9.
    Chowdury, R., Ramachandran, V.: External-memory exact and approximate all-pairs shortest-paths in undirected graphs. In: Proc. 16th Ann. Symposium on Discrete Algorithms (SODA), pp. 735–744. ACM-SIAM (2005)Google Scholar
  10. 10.
    Cormen, T.H., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw-Hill, New York (1990)Google Scholar
  11. 11.
    Magnien, C., Latapy, M., Habib, M.: Fast computation of empirically tight bounds for the diameter of massive graphs (2007),
  12. 12.
    Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–735. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Meyer, U., Sanders, P., Sibeyn, J. (eds.): Algorithms for Memory Hierarchies. LNCS, vol. 2625. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  14. 14.
    Meyer, U., Zeh, N.: I/O-efficient undirected shortest paths. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 434–445. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proc. 10th Ann. Symposium on Discrete Algorithms (SODA), pp. 687–694. ACM-SIAM (1999)Google Scholar
  16. 16.
    Vitter, J.S.: External memory algorithms and data structures: Dealing with massive data. ACM computing Surveys 33, 209–271 (2001), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ulrich Meyer
    • 1
  1. 1.Institute for Computer ScienceJ.W. Goethe UniversityFrankfurt/MainGermany

Personalised recommendations