A Simple Linear Time Algorithm for the Isomorphism Problem on Proper Circular-Arc Graphs

  • Min Chih Lin
  • Francisco J. Soulignac
  • Jayme L. Szwarcfiter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5124)


A circular-arc model \( {\mathcal {M}} =(C,\mathcal{A})\) is a circle C together with a collection \(\mathcal{A}\) of arcs of C. If no arc is contained in any other then \(\mathcal{M}\) is a proper circular-arc model, and if some point of C is not covered by any arc then \({\mathcal{M}}\) is an interval model. A (proper) (interval) circular-arc graph is the intersection graph of a (proper) (interval) circular-arc model. Circular-arc graphs and their subclasses have been the object of a great deal of attention in the literature. Linear time recognition algorithms have been described both for the general class and for some of its subclasses. For the isomorphism problem, there exists a polynomial time algorithm for the general case, and a linear time algorithm for interval graphs. In this work we develop a linear time algorithm for the isomorphism problem in proper circular-arc graphs, based on uniquely encoding a proper circular-arc model. Our method relies on results about uniqueness of certain PCA models, developed by Deng, Hell and Huang in [6]. The algorithm is easy to code and uses only basic tools available in almost every programming language.


isomorphism problems proper circular-arc graphs proper circular-arc canonization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhattacharya, B., Hell, P., Huang, J.: A linear algorithm for maximum weight cliques in proper circular arc graphs. SIAM J. Discrete Math. 9(2), 274–289 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Booth, K.S.: Lexicographically least circular substrings. Inform. Process. Lett. 10(4-5), 240–242 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13(3), 335–379 (1976)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM, Philadelphia (1999)zbMATHGoogle Scholar
  5. 5.
    Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition algorithm (extended abstract). In: 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–180. ACM, New York (1998)Google Scholar
  6. 6.
    Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Co., San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. North–Holland Publishing Co, Amsterdam (2004)zbMATHGoogle Scholar
  9. 9.
    Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoret. Comput. Sci. 234(1-2), 59–84 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Hsu, W.: A simple test for interval graphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 11–16. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Hsu, W.: O(m.n) algorithms for the recognition and isomorphism problems on circular-arc graphs. SIAM J. Comput. 24(3), 411–439 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Kaplan, H., Nussbaum, Y.: A simpler linear-time recognition of circular-arc graphs. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 41–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kaplan, H., Nussbaum, Y.: Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 289–300. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18(1), 68–81 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Proper Helly circular-arc graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, pp. 248–257. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Lin, M.C., Szwarcfiter, J.L.: Unit Circular-Arc Graph Representations and Feasible Circulations. SIAM J. Discrete Math. 22(1), 409–423 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph isomorphism. J. Assoc. Comput. Mach. 26(2), 183–195 (1979)MathSciNetzbMATHGoogle Scholar
  18. 18.
    McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory (2nd Ann Arbor Graph Theory Conf.), pp. 139–146. Academic Press, New York (1969)Google Scholar
  20. 20.
    Shiloach, Y.: Fast canonization of circular strings. J. Algorithms 2(2), 107–121 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Spinrad, J.P.: Efficient graph representations. American Mathematical Society, Providence (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Min Chih Lin
    • 1
  • Francisco J. Soulignac
    • 1
  • Jayme L. Szwarcfiter
    • 2
  1. 1.Facultad de Ciencias Exactas y Naturales, Departamento de ComputaciónUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Matemática, NCE and COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations