Reoptimization of Steiner Trees

  • Davide Bilò
  • Hans-Joachim Böckenhauer
  • Juraj Hromkovič
  • Richard Královič
  • Tobias Mömke
  • Peter Widmayer
  • Anna Zych
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5124)

Abstract

In this paper we study the problem of finding a minimum Steiner Tree given a minimum Steiner Tree for similar problem instance. We consider scenarios of altering an instance by locally changing the terminal set or the weight of an edge. For all modification scenarios we provide approximation algorithms that improve best currently known corresponding approximation ratios.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32(4), 171–176 (1989)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reoptimization of steiner trees: Changing the terminal set. Theoretical Computer Science (to appear)Google Scholar
  3. 3.
    Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In: 34th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2008, pp. 50–65 (2008)Google Scholar
  4. 4.
    Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1971/1972)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Escoffier, B., Milanic, M., Paschos, V.T.: Simple and fast reoptimizations for the Steiner tree problem. Technical Report 2007-01, DIMACS (2007)Google Scholar
  6. 6.
    Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problems. Annals of Discrete Mathematics, vol. 53. North-Holland, Amsterdam (1992)Google Scholar
  7. 7.
    Prömel, H.J., Steger, A.: The Steiner Tree Problem. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (2002)Google Scholar
  8. 8.
    Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 770–779. ACM Press, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Davide Bilò
    • 1
  • Hans-Joachim Böckenhauer
    • 1
  • Juraj Hromkovič
    • 1
  • Richard Královič
    • 1
  • Tobias Mömke
    • 1
  • Peter Widmayer
    • 1
  • Anna Zych
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations