Bounded Unpopularity Matchings

  • Chien-Chung Huang
  • Telikepalli Kavitha
  • Dimitrios Michail
  • Meghana Nasre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5124)


We investigate the following problem: given a set of jobs and a set of people with preferences over the jobs, what is the optimal way of matching people to jobs? Here we consider the notion of popularity. A matching M is popular if there is no matching M′ such that more people prefer M′ to M than the other way around. Determining whether a given instance admits a popular matching and, if so, finding one, was studied in [2]. If there is no popular matching, a reasonable substitute is a matching whose unpopularity is bounded. We consider two measures of unpopularity - unpopularity factor denoted by u(M) and unpopularity margin denoted by g(M). McCutchen recently showed that computing a matching M with the minimum value of u(M) or g(M) is NP-hard, and that if G does not admit a popular matching, then we have u(M) ≥ 2 for all matchings M in G.

Here we show that a matching M that achieves u(M) = 2 can be computed in \(O(m\sqrt{n})\) time (where m is the number of edges in G and n is the number of nodes) provided a certain graph H admits a matching that matches all people. We also describe a sequence of graphs: H = H2, H3,...,Hk such that if Hk admits a matching that matches all people, then we can compute in \(O(km\sqrt{n})\) time a matching M such that u(M) ≤ k − 1 and \(g(M) \le n(1-\frac{2}{k})\). Simulation results suggest that our algorithm finds a matching with low unpopularity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto-optimality in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal on Computing 37(4), 1030–1045 (2007), Preliminary version. In: Proc. of 16th SODA, pp. 424-432, (2005) Google Scholar
  3. 3.
    Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica 66(3), 689–701 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded Unpopularity Matchings. Dartmouth Computer Science, Technical Report (2008)-616Google Scholar
  5. 5.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–15 (1962)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gardenfors, P.: Match making: assignments based on bilateral preferences. Behavioural Sciences 20, 166–173 (1975)CrossRefGoogle Scholar
  7. 7.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)MATHGoogle Scholar
  8. 8.
    Hopcroft, J.E., Karp, R.M.: A n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs. SIAM Journal on Computing 2, 225–231 (1973)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. Journal of Political Economy 87(2), 293–314 (1979)CrossRefGoogle Scholar
  10. 10.
    Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal matchings. ACM Transactions on Algorithms 2(4), 602–610 (2006), Preliminary version. In: Proc. of 15th SODA, pp. 68-75 (2004) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mahdian, M.: Random popular matchings. In: Proceedings of the 7th ACM Conference on Electronic-Commerce, pp. 238–242 (2006)Google Scholar
  12. 12.
    Manlove, D.F., Sng, C.: Popular matchings in the capacitated house allocation problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    McCutchen, M.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Proceedings of LATIN 2008, the 8th Latin American Theoretical Informatics Symposium, LNCS, vol. 4957, Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Roth, A.E., Postlewaite, A.: Weak versus strong domination in a market with indivisible goods. Journal of Mathematical Economics 4, 131–137 (1977)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Yuan, Y.: Residence exchange wanted: a stable residence exchange problem. European Journal of Operational Research 90, 536–546 (1996)MATHCrossRefGoogle Scholar
  17. 17.
    Zhou, L.: On a conjecture by Gale about one-sided matching problems. Journal of Economic Theory 52(1), 123–135 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Chien-Chung Huang
    • 1
  • Telikepalli Kavitha
    • 2
  • Dimitrios Michail
    • 3
  • Meghana Nasre
    • 2
  1. 1.Dartmouth CollegeUSA
  2. 2.Indian Institute of ScienceIndia
  3. 3.INRIA Sophia Antipolis - MéditerranéeFrance

Personalised recommendations