Complex Motion in Environmental Physics and Live Sciences

  • Bernd Jähne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3417)


Image sequence processing techniques are an essential tool for the experimental investigation of dynamical processes such as exchange, growth, and transport processes. These processes constitute much more complex motions than normally encountered in computer vision. In this paper, optical flow based motion analysis is extended into a generalized framework to estimate the motion field and the parameters of dynamic processes simultaneously. Examples from environmental physics and live sciences illustrate how this framework helps to tackles some key scientific questions that could not be solved without taking and analyzing image sequences.


Image Sequence Motion Estimation Data Vector Window Function Structure Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jähne, B.: Spatio-Temporal Image Processing. LNCS, vol. 751. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  2. 2.
    Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proc. ICCV’87, Washington, DC, pp. 433–438. IEEE Computer Society Press, Los Alamitos (1987)Google Scholar
  3. 3.
    Garbe, C.S., Spies, H., Jähne, B.: Estimation of surface flow and net heat flux from infrared image sequences. J. Mathematical Imaging and Vision 19, 159–174 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Haussecker, H.W., Fleet, D.J.: Computing optical flow with physical models of brightness variation. IEEE Trans. PAMI 23, 661–673 (2001)Google Scholar
  5. 5.
    Jehle, M., Jähne, B.: A novel method for spatiotemporal analysis of flows within the water-side viscous boundary layer. In: Grant, I. (ed.) 12th International Symposium Flow Visualization, Göttingen, 10–14 September, Optimage Ltd., Edinburgh (2006)Google Scholar
  6. 6.
    Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, New York (1975)Google Scholar
  7. 7.
    Garbe, C., Roetmann, K., Jähne, B.: An optical flow based technique for the non-invasive measurement of microfluidic flows. In: Grant, I. (ed.) 12th International Symposium Flow Visualization, Göttingen, 10–14 September, Optimage Ltd., Edinburgh (2006)Google Scholar
  8. 8.
    Garbe, C.: Measuring and Modeling Fluid Dynamic Processes using Digital Image Sequence Analysis. Habilition thesis, Univ. Heidelberg (2007)Google Scholar
  9. 9.
    Jähne, B.: Digital Image Processing, 6th edn. Springer, Berlin (2005)Google Scholar
  10. 10.
    Schmundt, D., Stitt, M., Jähne, B., Schurr, U.: Quantitative analysis of the local rates of growth of dicot leaves at a high temporal and spatial resolution, using image sequence analysis. The Plant J. 16, 505–514 (1998)CrossRefGoogle Scholar
  11. 11.
    Garbe, C.S., Spies, H., Jähne, B.: Mixed ols-tls for the estimation of dynamic processes with a linear source term. In: Van Gool, L. (ed.) Pattern Recognition. LNCS, vol. 2449, pp. 463–471. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Mester, R.: The generalization, optimization, and information-theoretic justification of filter-based and autocovariance-based motion estimation. In: Proc. Intern. Conf. Image Processing (ICIP’03), Barcelona (2003)Google Scholar
  13. 13.
    Scharr, H., Körgel, S., Jähne, B.: Numerische isotropieoptimierung von fir-filtern mittels querglättung. In: Paulus, E., Wahl, F.M. (eds.) Mustererkennung 1997. 19. DAGM Symposium, Braunschweig. Informatik aktuell, pp. 367–374. Springer, Berlin (1997)Google Scholar
  14. 14.
    Scharr, H.: Optimale Operatoren in der Digitalen Bildverarbeitung. Diss., Univ. Heidelberg (10.05.2000)Google Scholar
  15. 15.
    Scharr, H.: Optimal filters for extended optical flow. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 14–29. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Felsberg, M., Granlund, G.H.: POI detection using channel clustering and the 2d energy tensor. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recognition. LNCS, vol. 3175, pp. 103–110. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  18. 18.
    Schnörr, C., Weickert, J.: Variational image motion computation: theoretical framework, problems and perspectives. In: Sommer, G., Krüger, N., Perwasser, C. (eds.) Mustererkennung 2000. Informatik Aktuell, pp. 476–487. Springer, Berlin (2000)Google Scholar
  19. 19.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer, Dordrecht (1995)Google Scholar
  20. 20.
    Felsberg, M.: Disparity from monogenic phase. In: Van Gool, L. (ed.) Pattern Recognition. LNCS, vol. 2449, pp. 248–256. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Wenig, M.: Satellite Measurement of Long-Term Tropospheric Trace Gas Distributions and Source Strengths - Algorithm Development and Data Analysis. PhD thesis, Univ. Heidelberg (2001)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Bernd Jähne
    • 1
  1. 1.Research Group Image Processing, Interdisciplinary Center for Scientific Computing, and, Institute for Environmental Physics, University of HeidelbergGermany

Personalised recommendations