Optimal Filters for Extended Optical Flow

  • Hanno Scharr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3417)


Estimation of optical flow and physically motivated brightness changes can be formulated as parameter estimation in linear models. Accuracy of this estimation heavily depends on the filter families used to implement the models. In this paper we focus on models whose terms are all data dependent and therefore are best estimated via total-least-squares (TLS) or similar estimators. Using three different linear models we derive model dependent optimality criteria based on transfer functions of filter families with given fixed size. Using a simple optimization procedure, we demonstrate typical properties of optimal filter sets for optical flow, simultaneous estimation of optical flow and diffusion, as well as optical flow and exponential decay. Exemplarily we show their performance and state some useful choices.


Transfer Function Weight Function Optical Flow Motion Estimation Reference Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badino, H.: A robust approach for ego-motion estimation using a mobile stereo platform. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 198–208. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)CrossRefGoogle Scholar
  3. 3.
    Bruhn, A., Weickert, J., Schnörr, C.: Combining the advantages of local and global optic flow methods. In: Van Gool, L. (ed.) Pattern Recognition. LNCS, vol. 2449, pp. 454–462. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Elad, M., Teo, P., Hel-Or, Y.: Optimal filters for gradient-based motion estimation. In: ICCV’99 (1999)Google Scholar
  5. 5.
    Farid, H., Simoncelli, E.P.: Optimally rotation-equivariant directional derivative kernels. In: 7th Int’l Conf Computer Analysis of Images and Patterns, Kiel (1997)Google Scholar
  6. 6.
    Garbe, C.: Measuring Heat Exchange Processes at the Air-Water Interface from Thermographic Image Sequence Analysis. PhD thesis, Univ. Heidelberg (2001)Google Scholar
  7. 7.
    Haußecker, H., Fleet, D.J.: Computing optical flow with physical models of brightness variation. PAMI 23(6), 661–673 (2001)Google Scholar
  8. 8.
    Haußecker, H., Spies, H.: Motion. In: Jähne, B., Haußecker, H., Geißler, P. (eds.) Handbook of Computer Vision and Applications, Academic Press, London (1999)Google Scholar
  9. 9.
    Jähne, B.: Spatio-Temporal Image Processing. LNCS, vol. 751. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  10. 10.
    Jähne, B.: Digital Image Processing, 4th edn. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  11. 11.
    Jähne, B., Scharr, H., Körkel, S.: Principles of filter design. In: Handbook of Computer Vision and Applications, Academic Press, London (1999)Google Scholar
  12. 12.
    Kamgar-Parsi, B., Kamgar-Parsi, B., Rosenfeld, A.: Optimally isotropic laplacian operator. IEEE Trans. Img. Proc. 8(10) (1999)Google Scholar
  13. 13.
    Knutsson, H., Andersson, M.: Optimization of sequential filters. Technical Report LiTH-ISY-R-1797, CV Lab., Univ. Linköping (1995)Google Scholar
  14. 14.
    Knutsson, H., Andersson, M., Wiklund, J.: Multiple space filter design. In: Proc. SSAB Symposium on Image Analysis, Göteborg, Schweden (1998)Google Scholar
  15. 15.
    Knutsson, H., Andersson, M., Wiklund, J.: Advanced filter design. Proc. SCIA (1999)Google Scholar
  16. 16.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  17. 17.
    Proakis, J.G., Manolakis, D.G.: Digital Signal Processing, Principles, Algorithms, and Applications. Macmillan, Basingstoke (1992)Google Scholar
  18. 18.
    Scharr, H.: Optimal Operators in Digital Image Processing. U. Heidelberg (2000)Google Scholar
  19. 19.
    Scharr, H.: Optimal filter families for extended optical flow. Report, Computational Nano-Vision Group, Santa Clara CA 95054, USA (2002)Google Scholar
  20. 20.
    Scharr, H., Körkel, S., Jähne, B.: Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung. In: DAGM’97, pp. 367–374 (1997)Google Scholar
  21. 21.
    Schnörr, C., Weickert, J.: Variational image motion computation: Theoretical framework, problems and perspectives. In: DAGM’2000, pp. 476–487 (2000)Google Scholar
  22. 22.
    Simoncelli, E.: Design of multidimensional derivative kernels. In: First IEEE Int’l Conf. on Image Processing, vol. I, Austin, Texas, pp. 790–793 (Nov. 1994)Google Scholar
  23. 23.
    van den Hengel, A., Chojnacki, W., Brooks, M.J.: Determining the Translational Speed of a Camera from Time-Varying Optical Flow. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 190–197. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Woelk, F., Koch, R.: Robust monocular detection of independent motion by a moving observer. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 209–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Hanno Scharr
    • 1
  1. 1.Institute for Chemistry and Dynamics of the Geosphere, ICG III, Forschungszentrum Jülich GmbH, 52425 JülichGermany

Personalised recommendations