Lexical and Semantic Methods in Inner Text Topic Segmentation: A Comparison between C99 and Transeg

  • Alexandre Labadié
  • Violaine Prince
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5039)

Abstract

This paper present a semantic and syntactic distance based method in topic text segmentation and compare it to a very well known text segmentation algorithm: c99. To do so we ran the two algorithms on a corpus of twenty two French political discourses and compared their results.

Keywords

Text segmentation topic change c99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi, F.Y.Y., Wiemer-Hastings, P., Moore, J.: Latent semantic analysis for text segmentation. In: Proceedings of EMNLP, pp. 109–117 (2001)Google Scholar
  2. 2.
    Chauché, J.: Un outil multidimensionnel de l’analyse du discours. In: Proceedings of Coling 1984, vol. 1, pp. 11–15 (1984)Google Scholar
  3. 3.
    Prince, V., Labadié, A.: Text segmentation based on document understanding for information retrieval. In: Kedad, Z., Lammari, N., Métais, E., Meziane, F., Rezgui, Y. (eds.) NLDB 2007. LNCS, vol. 4592, pp. 295–304. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chauché, J., Prince, V., Jaillet, S., Teisseire, M.: Classification automatique de textes á partir de leur analyse syntaxico-sémantique. In: Proceedings of TALN 2003, pp. 55–65 (2003)Google Scholar
  5. 5.
    Azé, J., Heitz, T., Mela, A., Mezaour, A., Peinl, P., Roche, M.: Présentation de deft 2006 (defi fouille de textes). In: Proceedings of DEFT 2006, vol. 1, pp. 3–12 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexandre Labadié
    • 1
  • Violaine Prince
    • 1
  1. 1.LIRMMMontpellier Cedex 5France

Personalised recommendations