Towards Semantic Search

  • Ricardo Baeza-Yates
  • Massimiliano Ciaramita
  • Peter Mika
  • Hugo Zaragoza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5039)


Semantic search seems to be an elusive and fuzzy target to many researchers. One of the reasons is that the task lies in between several areas of specialization. In this extended abstract we review some of the ideas we have been investigating while approaching this problem. First, we present how we understand semantic search, the Web and the current challenges. Second, how to use shallow semantics to improve Web search. Third, how the usage of search engines can capture the implicit semantics encoded in the queries and actions of people. To conclude, we discuss how these ideas can create virtuous feedback circuit for machine learning and, ultimately, better search.


Natural Language Processing Sentiment Analysis Semantic Search Dependency Parsing Semantic Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding High-Quality Content in Social Media. In: First ACM Conference on Web Search and Data Mining (WSDM 2008), Stanford (February 2008)Google Scholar
  2. 2.
    Alonso, O., Gertz, M., Baeza-Yates, R.: On the Value of Temporal Information in Information Retrieval. ACM SIGIR Forum 41(2), 35–41 (2007)CrossRefGoogle Scholar
  3. 3.
    Atserias, J., Zaragoza, H., Ciaramita, M., Attardi, G.: Semantically Annotated Snapshot of the English Wikipedia. In: Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC) (2008),
  4. 4.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press/Addison-Wesley, England (1999)Google Scholar
  5. 5.
    Baeza-Yates, R.: Challenges in the Interaction of Natural Language Processing and Information Retrieval. In: Gelbukh, A. (ed.) CICLing 2004. LNCS, vol. 2945, pp. 445–456. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Baeza-Yates, R., Mika, P., Zaragoza, H.: Search, Web 2.0, and the Semantic Web. In: Benjamins, R. (ed.) Trends and Controversies: Near-Term Prospects for Semantic Technologies; IEEE Intelligent Systems 23 (1), 80–82 (2008) Google Scholar
  7. 7.
    Baeza-Yates, R., Tiberi, A.: Extracting Semantic Relations from Query Logs. In: ACM KDD 2007, San Jose, California, USA, pp. 76–85 (2007)Google Scholar
  8. 8.
    Baeza-Yates, R., Calderón, L., González, C.: The Intention Behind Web Queries. In: SPIRE 2006. LNCS, pp. 98–109. Springer, Glasgow, Scotland (2006)Google Scholar
  9. 9.
    Ciaramita, M., Attardi, G.: Dependency Parsing with Second- Order Feature Maps and Annotated Semantic Information. In: Proceedings of the 10th International Conference on Parsing Technology (2007)Google Scholar
  10. 10.
    Ciaramita, M., Murdock, V., Plachouras, V.: Online Learning from Click Data for Sponsored Search. In: Proceedings of WWW 2008, Beijing, China (2008)Google Scholar
  11. 11.
    Lewis, D.D., Sparck-Jones, K.: Natural Language Processing for Information Retrieval. Communications of the ACM 39(1), 92–101 (1996)CrossRefGoogle Scholar
  12. 12.
    Mika, P.: Microsearch demo (2008),
  13. 13.
    Overell, S., Sigurbjornsson, B., Zwol, R.V.: Classifying Tags using Open Content Resources (submitted for publication) (2008)Google Scholar
  14. 14.
    Sigurbjornsson, B., Zwol, R.V.: Flickr Tag Recommendation based on Collective Knowledge. In: WWW 2008, Beijing, China (2008)Google Scholar
  15. 15.
    Surdeanu, M., Ciaramita, M., Zaragoza, H.: Learning to Rank Answers on Large Online QA Collections. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT) (2008)Google Scholar
  16. 16.
    Surowiecki, J.: The Wisdom of Crowds. Random House, New York (2004)Google Scholar
  17. 17.
    Zaragoza, H., Rode, H., Mika, P., Atserias, J., Ciaramita, M., Attardi, G.: Ranking Very Many Typed Entities on Wikipedia. In: CIKM 2007: Proceedings of the sixteenth ACM international conference on Information and Knowledge Management, Lisbon, Portugal (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ricardo Baeza-Yates
    • 1
  • Massimiliano Ciaramita
    • 1
  • Peter Mika
    • 1
  • Hugo Zaragoza
    • 1
  1. 1.Yahoo! ResearchBarcelonaSpain

Personalised recommendations