Exploiting Morphological Query Structure Using Genetic Optimisation

  • Jose R. Pérez-Agüera
  • Hugo Zaragoza
  • Lourdes Araujo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5039)

Abstract

In this paper we deal with two issues. First, we discuss the negative effects of term correlation in query expansion algorithms, and we propose a novel and simple method (query clauses) to represent expanded queries which may alleviate some of these negative effects. Second, we discuss a method to optimise local query expansion methods using genetic algorithms, and we apply this method to improve stemming. We evaluate this method with the novel query representation method and show very significant improvements for the problem of optimising stemming.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araujo, L., Pérez-Agüera, J.R.: Improving Query Expansion with Stemming Terms: A New Genetic Algorithm Approach. In: Eighth European Conference on Evolutionary Computation in Combinatorial Optimisation (2008)Google Scholar
  2. 2.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press / Addison-Wesley (1999)Google Scholar
  3. 3.
    Callan, J.P., Croft, W.B., Harding, S.M.: The INQUERY Retrieval System. In: DEXA, pp. 78–83 (1992)Google Scholar
  4. 4.
    Carpineto, C., de Mori, R., Romano, G., Bigi, B.: An Information-theoretic Approach to Automatic Query Expansion. ACM Trans. Inf. Syst. 19(1), 1–27 (2001)CrossRefGoogle Scholar
  5. 5.
    Chang, Y., Ounis, I., Kim, M.: Query Reformulation Using Automatically Generated Query Concepts from a Document Space. Inf. Process. Manage. 42(2), 453–468 (2006)CrossRefGoogle Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)MATHGoogle Scholar
  7. 7.
    Holland, J.J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)Google Scholar
  8. 8.
    Lopez-Pujalte, C., Bote, V.P.G., de Moya Anegón, F.: A Test of Genetic Algorithms in Relevance Feedback. Inf. Process. Manage. 38(6), 793–805 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution programs. 2nd edn. Springer, Heidelberg (1994)MATHGoogle Scholar
  10. 10.
    Peters, C., Braschler, M.: European Research Letter: Cross-Language System Evaluation: The CLEF Campaigns. JASIST 52(12), 1067–1072 (2001)CrossRefGoogle Scholar
  11. 11.
    Pôssas, B., Ziviani, N., Wagner Meira, J., Ribeiro-Neto, B.: Set-based Vector Model: An Efficient Approach for Correlation-based Ranking. ACM Trans. Inf. Syst. 23(4), 397–429 (2005)CrossRefGoogle Scholar
  12. 12.
    Robertson, S.E., Walker, S.: Some Simple Effective Approximations to the 2-Poisson Model for Probabilistic Weighted Retrieval. In: ACM SIGIR 1994: Proceedings of the 17th annual international ACM SIGIR, pp. 232–241. Springer, New York (1994)Google Scholar
  13. 13.
    Silva, I.R., Souza, J.N., Santos, K.S.: Dependence Among Terms in Vector Space Model. In: IDEAS 2004: Proceedings of the International Database Engineering and Applications Symposium (IDEAS 2004), Washington, DC, USA, pp. 97–102. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  14. 14.
    Wong, S.K.M., Ziarko, W., Raghavan, V.V., Wong, P.C.N.: On Modeling of Information Retrieval Concepts in Vector Space. ACM Trans. Database Syst. 12(2), 299–321 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jose R. Pérez-Agüera
    • 1
  • Hugo Zaragoza
    • 2
  • Lourdes Araujo
    • 3
  1. 1.Dpto de Ingeniería del Software e Inteligencia ArtificialUCM 
  2. 2.Yahoo! ResearchBarcelona 
  3. 3.Dpto. de Lenguajes y Sistemas InformáticosUNED 

Personalised recommendations