Advertisement

The Birth of Model Checking

  • Edmund M. Clarke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5000)

Abstract

“When the time is ripe for certain things, these things appear in different places in the manner of violets coming to light in early spring.” (Wolfgang Bolyai to his son Johann in urging him to claim the invention of non- Euclidean geometry without delay [Vit88]).

Keywords

Model Check Temporal Logic Concurrent Program Kripke Structure Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACD90]
    Alur, R., Courcourbetis, C., Dill, D.: Model-checking for real-time systems. In: Proceedings of the 5th Symp. on Logic in Computer Science, pp. 414–425 (1990)Google Scholar
  2. [AH99]
    Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design: An International Journal 15(1), 7–48 (1999)CrossRefMathSciNetGoogle Scholar
  3. [AK86]
    Apt, K., Kozen, D.: Limits for automatic verification of finite-state systems. IPL 15, 307–309 (1986)CrossRefMathSciNetGoogle Scholar
  4. [AKS83]
    Aggarwal, S., Kurshan, R.P., Sabnani, K.: A calculus for protocol specification and validation. In: Rudin, H., West, C.H. (eds.) Protocol Specification, Testing and Verification, pp. 19–34. North-Holland (1983)Google Scholar
  5. [AMN05]
    Alur, R., Madhusudan, P., Nam, W.: Symbolic Compositional Verification by Learning Assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)Google Scholar
  6. [Ang87]
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  7. [ASM80]
    Abrial, J.-R., Schuman, S.A., Meyer, B.: Specification language. In: McKeag, R.M., Macnaughten, A.M. (eds.) On the Construction of Programs, pp. 343–410. Cambridge University Press (1980)Google Scholar
  8. [BAMP83]
    Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. Acta Informatica 20, 207–226 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  9. [BBLS92]
    Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.: Property preserving simulations. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 260–273. Springer, Heidelberg (1992)Google Scholar
  10. [BCC+03]
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking. Advances in computers, vol. 58. Academic Press (2003)Google Scholar
  11. [BCCY99]
    Clarke, E., Biere, A., Cimatti, A., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)Google Scholar
  12. [BCD85]
    Browne, M.C., Clarke, E.M., Dill, D.: Checking the correctness of sequential circuits. In: Proceedings of the 1985 International Conference on Computer Design, Port Chester, New York, October 1985, pp. 545–548. IEEE (1985)Google Scholar
  13. [BCD86]
    Browne, M.C., Clarke, E.M., Dill, D.L.: Automatic circuit verification using temporal logic: Two new examples. In: Formal Aspects of VLSI Design. Elsevier Science Publishers, North Holland (1986)Google Scholar
  14. [BCDM86]
    Browne, M.C., Clarke, E.M., Dill, D.L., Mishra, B.: Automatic verification of sequential circuits using temporal logic. IEEE Transactions on Computers C-35(12), 1035–1044 (1986)CrossRefGoogle Scholar
  15. [BCG88]
    Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propositional temporal logic. Theoretical Computer Science 59(1–2), 115–131 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  16. [BCM+90]
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model checking: 1020 states and beyond. In: Proc. 5th Ann. Symp. on Logic in Comput. Sci., IEEE Comp. Soc. Press (June 1990)Google Scholar
  17. [BCM+92]
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  18. [BEM97]
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: International Conference on Concurrency Theory, pp. 135–150 (1997)Google Scholar
  19. [BF89]
    Bose, S., Fisher, A.: Verifying pipelined hardware using symbolic logic simulation. In: IEEE International Conference on Computer Design (October 1989)Google Scholar
  20. [BMMR01]
    Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of C programs  36(5), 203–213 (June 2001)Google Scholar
  21. [Boc82]
    Bochmann, G.V.: Hardware specification with temporal logic: An example. IEEE Transactions on Computers C-31(3) (March 1982)Google Scholar
  22. [BSW69]
    Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex transmission over half-duplex links. Commun. ACM 12(5), 260–261 (1969)CrossRefGoogle Scholar
  23. [Bur74]
    Burstall, R.M.: Program proving as hand simulation with a little induction. In: IFIP congress 1974, pp. 308–312. North Holland (1974)Google Scholar
  24. [BY75]
    Basu, S.K., Yeh, R.T.: Strong verification of programs. IEEE Trans. Software Eng. 1(3), 339–346 (1975)MathSciNetGoogle Scholar
  25. [CBM89]
    Coudert, O., Berthet, C., Madre, J.C.: Verification of synchronous sequential machines based on symbolic execution. In: Sifakis [Sif89], pp. 365–373.Google Scholar
  26. [CBM90]
    Coudert, O., Berthet, C., Madre, J.C.: Verifying temporal properties of sequential machines without building their state diagrams. In: Kurshan, Clarke [KC90], pp. 23–32Google Scholar
  27. [CC77]
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. 4th Ann. ACM Symp. on Principles of Prog. Lang., pp. 238–252 (January 1977)Google Scholar
  28. [CCGR00]
    Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: Nusmv: A new symbolic model checker. STTT 2(4), 410–425 (2000)zbMATHGoogle Scholar
  29. [CCSS05]
    Chaki, S., Clarke, E., Sharygina, N., Sinha, N.: Dynamic component substitutability analysis. In: Proc. of Conf. on Formal Methods (2005)Google Scholar
  30. [CCST05]
    Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee reasoning for simulation conformance. In: Proc. of Computer-Aided Verification (2005)Google Scholar
  31. [CD88]
    Clarke, E.M., Draghicescu, I.A.: Expressibility results for linear time and branching time logics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 428–437. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  32. [CE81]
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  33. [CES83]
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. In: Proc. 10th Ann. ACM Symp. on Principles of Prog. Lang. (January 1983)Google Scholar
  34. [CES86]
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  35. [CFJ93]
    Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model checking. In: Courcoubetis [Cou93], pp.450–462Google Scholar
  36. [CGB86]
    Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many identical finite-state processes. In: Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed Computing, pp. 240–248. ACM (August 1986)Google Scholar
  37. [CGH83]
    Clarke, E.M., German, S.M., Halpern, J.Y.: Effective axiomatizations of Hoare logics. J. ACM 30(3), 612–636 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  38. [CGH+93]
    Clarke, E.M., Grumberg, O., Hiraishi, H., Jha, S., Long, D.E., McMillan, K.L., Ness, L.A.: Verification of the Futurebus+ cache coherence protocol. In: Claesen [Cla93]Google Scholar
  39. [CGJ+00]
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Computer Aided Verification (CAV), pp. 154–169 (2000)Google Scholar
  40. [CGL92]
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. In: POPL, pp. 342–354 (1992)Google Scholar
  41. [CGL94]
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  42. [CGP03]
    Cobleigh, J., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)Google Scholar
  43. [CL79]
    Clarke, E.M., Liu, L.: Approximate algorithms for optimization of busy waiting in parallel programs (preliminary report). In: 20th Annual Symposium on Foundations of Computer Science, pp. 255–266. IEEE Computer Society (1979)Google Scholar
  44. [Cla77a]
    Clarke, E.M.: Program invariants as fixed points (preliminary reports). In: 18th Annual Symposium on Foundations of Computer Science, pp. 18–29. IEEE Computer Society (November 1977)Google Scholar
  45. [Cla77b]
    Clarke, E.M.: Programming language constructs for which it is impossible to obtain good hoare-like axiom systems. In: Fourth ACM Symposium on Principles of Programming Languages, pp. 10–20. ACM Press, New York (1977)Google Scholar
  46. [Cla78]
    Clarke, E.M.: Proving the correctness of coroutines without history variables. In: ACM-SE 16: Proceedings of the 16th annual Southeast regional conference, pp. 160–167. ACM Press, New York (1978)CrossRefGoogle Scholar
  47. [Cla79a]
    Clarke, E.: Program invariants as fixed points. Computing 21(4), 273–294 (1979)CrossRefzbMATHGoogle Scholar
  48. [Cla79b]
    Clarke, E.M.: Synthesis of resource invariants for concurrent programs. In: POPL, pp. 211–221 (1979)Google Scholar
  49. [Cla79c]
    Clarke, E.M.: Programming language constructs for which it is impossible to obtain good Hoare axiom systems. J. ACM 26(1), 129–147 (1979)CrossRefzbMATHGoogle Scholar
  50. [Cla80]
    Clarke, E.: Proving correctness of coroutines without history variables. Acta Inf. 13, 169–188 (1980)zbMATHGoogle Scholar
  51. [Cla85]
    Clarke, E.M.: The characterization problem for hoare logics. In: Proc. of a discussion meeting of the Royal Society of London on Mathematical logic and programming languages, Upper Saddle River, NJ, USA, pp. 89–106. Prentice-Hall, Inc (1985)Google Scholar
  52. [Cla93]
    Claesen, L. (ed.): Proc. 11th Int. Symp. on Comput. Hardware Description Lang. and their Applications. North-Holland (April 1993)Google Scholar
  53. [Coo78]
    Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM Journal on Computing 7(1), 70–90 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  54. [Cou93]
    Courcoubetis, C. (ed.): CAV 1993. LNCS, vol. 697. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  55. [dBM75]
    de Bakker, J.W., Meertens, L.: On the completeness of the inductive assertion method. Journal of Computer and System Sciences 11, 323–357 (1975)MathSciNetzbMATHGoogle Scholar
  56. [DC86]
    Dill, D.L., Clarke, E.M.: Automatic verification of asynchronous circuits using temporal logic. IEE Proceedings, Part E 133(5) (1986)Google Scholar
  57. [Dil89]
    Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. In: ACM Distinguished Dissertations. MIT Press (1989)Google Scholar
  58. [EC80]
    Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)Google Scholar
  59. [EF06]
    Eisner, C., Fisman, D.: A Practical Introduction to PSL (Series on Integrated Circuits and Systems). Springer, New York (2006)Google Scholar
  60. [EH86]
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: On branching time versus linear time. Journal of the ACM 33, 151–178 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  61. [EL85]
    Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time strikes back. In: Twelfth Symposium on Principles of Programming Languages, New Orleans, La, pp. 84–96 (January 1985)Google Scholar
  62. [ES93]
    Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis [Cou93], pp. 463–478Google Scholar
  63. [GL94]
    Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Transactions on Programming Languages and Systems 16, 843–872 (1994)CrossRefGoogle Scholar
  64. [God90]
    Godefroid, P.: Using partial orders to improve automatic verification methods. In: Kurshan, Clarke [KC90]Google Scholar
  65. [GS97]
    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  66. [HK87]
    Har’El, Z., Kurshan, R.P.: The COSPAN user’s guide. Technical Report 11211-871009-21TM, AT&T Bell Labs (1987)Google Scholar
  67. [HKPV95]
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Proceedings of the 27th Annual Symposium on Theory of Computing, pp. 373–382. ACM Press (1995)Google Scholar
  68. [Hoa85]
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)Google Scholar
  69. [ID93]
    Ip, C.W., Dill, D.L.: Better verification through symmetry. In: Claesen [Cla93]Google Scholar
  70. [Jon83]
    Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of IFIP 1983, pp. 321–332. North-Holland (1983)Google Scholar
  71. [KC90]
    Kurshan, R.P., Clarke, E.M.: Proc. 1990 Workshop on Comput.-Aided Verification (June 1990)Google Scholar
  72. [Kil73]
    Kildall, G.A.: A unified approach to global program optimization. In: POPL, pp. 194–206 (1973)Google Scholar
  73. [Kle71]
    Kleene, S.C.: Introduction to Metamathematics, Wolters-Noordhoff, Groningen (1971)Google Scholar
  74. [KM89]
    Kurshan, R.P., McMillan, K.L.: A structural induction theorem for processes. In: Proc. 8th Ann. ACM Symp. on Principles of Distributed Computing, pp. 239–247. ACM Press (August 1989)Google Scholar
  75. [Koz83]
    Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science 27, 333–354 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  76. [Krö77]
    Kröger, F.: Lar: A logic of algorithmic reasoning. Acta Inf. 8, 243–266 (1977)zbMATHGoogle Scholar
  77. [KU77]
    Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Inf. 7, 305–317 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  78. [Kur94]
    Kurshan, R.P.: Computer-aided verification of coordinating processes: the automata-theoretic approach. Princeton University Press (1994)Google Scholar
  79. [Lam80]
    Lamport, L.: “Sometimes” is sometimes “Not Never”. In: Ann. ACM Symp. on Principles of Prog. Lang., pp. 174–185 (1980)Google Scholar
  80. [LC80]
    Liu, L., Clarke, E.: Optimization of busy waiting in conditional critical regions. In: 13th Hawaii International Conference on System Sciences (January 1980)Google Scholar
  81. [Lon93]
    Long, D.E.: Model Checking, Abstraction, and Compositional Reasoning. PhD thesis, Carnegie Mellon Univ. (1993)Google Scholar
  82. [LP85]
    Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear specification. In: Proc. 12th Ann. ACM Symp. on Principles of Prog. Lang., pp. 97–107 (January 1985)Google Scholar
  83. [MC79]
    Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley Longman Publishing Co., Inc., Boston (1979)Google Scholar
  84. [MC81]
    Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Transactions on Software Engineering SE-7(4), 417–426 (1981)CrossRefMathSciNetGoogle Scholar
  85. [MC85]
    Mishra, B., Clarke, E.M.: Hierarchical verification of asynchronous circuits using temporal logic. Theoretical Computer Science 38, 269–291 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  86. [MCJ97]
    Marrero, W., Clarke, E., Jha, S.: Model checking for security protocols (1997)Google Scholar
  87. [McM93]
    McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer Academic Publishers (1993)Google Scholar
  88. [McM97]
    McMillan, K.L.: A compositional rule for hardware design refinement. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 24–35. Springer, Heidelberg (1997)Google Scholar
  89. [Mil71]
    Milner, R.: An algebraic definition of simulation between programs. In: Proc. 2nd Int. Joint Conf. on Artificial Intelligence, pp. 481–489 (September 1971)Google Scholar
  90. [MO81]
    Malachi, Y., Owicki, S.S.: Temporal specifications of self-timed systems. In: Kung, H.T., Sproull, B., Steele, G. (eds.) VLSI Systems and Computations, Comp. Sci. Press (1981)Google Scholar
  91. [OG76]
    Owicki, S., Gries, D.: Verifying properties of parallel programs: an axiomatic approach. Commun. ACM 19(5), 279–285 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  92. [OL82]
    Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans. Program. Lang. Syst. 4(3), 455–495 (1982)CrossRefzbMATHGoogle Scholar
  93. [Par74]
    Park, D.M.R.: Finiteness is mu-ineffable. Theory of Computation Report No. 3, Warwick (1974)Google Scholar
  94. [Par81]
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  95. [Pel94]
    Peled, D.: Combining partial order reductions with on-the-fly model-checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg (1994)Google Scholar
  96. [Pix90]
    Pixley, C.: Introduction to a computational theory and implementation of sequential hardware equivalence. In: Kurshan, Clarke [KC90], pp. 54–64Google Scholar
  97. [Pnu77]
    Pnueli, A.: The temporal semantics of concurrent programs. In: 18th Annual Symposium on Foundations of Computer Science (1977)Google Scholar
  98. [Pnu84]
    Pnueli, A.: In transition for global to modular temporal reasoning about programs. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems, NATO ASI series F, vol. 13. Springer (1984)Google Scholar
  99. [QS82]
    Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Proceedings of the 5th International Symposium on Programming, pp. 337–350 (1982)Google Scholar
  100. [QS83]
    Queille, J.P., Sifakis, J.: Fairness and related properties in transition systems - a temporal logic to deal with fairness. Acta Inf. 19, 195–220 (1982) (presented originally in FOCS 1982)MathSciNetGoogle Scholar
  101. [Ros94]
    Roscoe, A.W.: Model-checking CSP. In: Roscoe, A.W. (ed.) A Classical Mind: Essays in Honour of C. A. R. Hoare, pp. 353–378. Prentice-Hall (1994)Google Scholar
  102. [RS93]
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Comp. 103(2), 299–347 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  103. [SC86]
    Sistla, A.P., Clarke, E.M.: Complexity of propositional temporal logics. Journal of the ACM 32(3), 733–749 (1986)CrossRefMathSciNetGoogle Scholar
  104. [Sch98]
    David, A.: Schmidt. Data flow analysis is model checking of abstract interpretations. In: POPL, pp. 38–48 (1998)Google Scholar
  105. [Sif89]
    Sifakis, J. (ed.): Automatic Verification Methods for Finite State Systems. LNCS, vol. 407. Springer, Heidelberg (1989)Google Scholar
  106. [Tar55]
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 285–309 (1955)MathSciNetzbMATHGoogle Scholar
  107. [TO80]
    Taylor, R.N., Osterweil, L.J.: Anomaly detection in concurrent software by static data flow analysis. IEEE Trans. Software Eng. 6(3), 265–278 (1980)CrossRefGoogle Scholar
  108. [Val90]
    Valmari, A.: A stubborn attack on the state explosion problem. In: Kurshan, Clarke [KC90]Google Scholar
  109. [Vit88]
    Vitanyi, P.M.B.: Andrei nikolaevich kolmogorov.  1, 3–18 (1988)Google Scholar
  110. [VW86]
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. 1st Ann. Symp. on Logic in Comput. Sci. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar
  111. [WL89]
    Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with network invariants. In: Sifakis [Sif89]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Edmund M. Clarke
    • 1
  1. 1.Department of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations