Applied Statistical Indicators to the Vehicle Routing Problem with Time Windows for Discriminate Appropriately the Best Algorithm

  • Jorge A. Ruiz-Vanoye
  • José A. Zárate M.
  • Ocotlán Díaz-Parra
  • Vanesa Landero N.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5073)


In this paper, we propose indicators based on the position method of the descriptive statistic for the Vehicle Routing Problem with Time Windows (VRPTW). The indicators are based on the calculation of the median; they will serve altogether with the technique of discriminant analysis to select appropriately the algorithm that better solves an instance of the VRPTW.


Discriminant analysis VRPTW prediction genetics algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thangiah, S.R.: Genetic Algorithms, Tabu Search and Simulated Annealing Methods for Vehicle Routing Problems with Time Windows. In: Chambers, L. (ed.) Practical Handbook of Genetic Algorithms: Complex Structures. CRC Press, Boca Raton (1998)Google Scholar
  2. 2.
    Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2001)Google Scholar
  3. 3.
    Rascon, C., Octacio, A.: Introducción a la estadística descriptiva (in Spanish). Editorial UNAM (1983)Google Scholar
  4. 4.
    SPSS, Inc. Headquarters, Chicago, Illinois,
  5. 5.
    Pérez, J., Pazos, R.A., Frausto, J., Rodriguez, G., Romero, D., Cruz, L.: A Statical Approach for Algorithm Selection. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Huberty, C.J.: Applied Discriminant Analysis. Wiley Interscience, Chichester (1994)MATHGoogle Scholar
  7. 7.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  8. 8.
    Blanton, J., Wainwright, R.L.: Multiple Vehicle Routing with Time and Capacity Constrainst using Genetic Algorithms. In: Proceedings of the Fifth International Conference on Genetic Algorithms (1993)Google Scholar
  9. 9.
    Pérez, J., Pazos, R.A., Frausto, J., Rodriguez, G., Cruz, L.: Self-Tuning Mechanism for Genetic Algorithms Parameters an Application to Data-Object Allocation in the Web. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Pérez, J., Pazos, R.A., Fraire, H., Cruz, L., Pecero, J.: Adaptive Allocation of Data-Objects in the Web using Neural Networks. LNCS, vol. 2829. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Pérez, J., Pazos, R.A., Fraire, H., Cruz, L., Santiago, E., García, N.E.: A Machine Learning Approach for Modeling Algorithm Performance Predictors. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Fink, E.: How to Solve it Automatically, Selection among Problem-solving Methods. In: Proceedings of the Fourth International Conference on AI Planning Systems AIPS 1998, pp. 128–136 (1998)Google Scholar
  13. 13.
    Pérez, J., Pazos, R.A., Frausto, J., Rodriguez, G., Cruz, L.: Comparison and Selection of Exact and Heuristic Algorithm. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Borghetti, B.J.: Inference algorithm Performance and Selection under Constrained Resources. MS Thesis. AFIT/GCS/ENG/96D-05 (1996)Google Scholar
  15. 15.
    Soares, C., Brazdil, P.: Zoomed Ranking, Selection of Classification Algorithms Based on Relevant Performance Information. In: Zighed, A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 126–135. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Ellis Horwood (1994) ISBN: 978-0131063600Google Scholar
  17. 17.
    Wagner, S., Affenzeller, M.: HeuristicLab: A Generic and Extensible Optimization Environment. Adaptive and Natural Computing Algorithms. Springer Computer Science, pp. 538–541 (2005)Google Scholar
  18. 18.
    Affenzeller, M.: New Generic Hybrids Based Upon Genetic Algorithms. Advances in Artificial Intelligence. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 329–339. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Solomon, M.M.: Algorithms for Vehicle Routing and Scheduling Problems with Time Window Constrains. Operations Research 35 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jorge A. Ruiz-Vanoye
    • 1
  • José A. Zárate M.
    • 1
  • Ocotlán Díaz-Parra
    • 2
  • Vanesa Landero N.
    • 1
  1. 1.Centro Nacional de Investigación y Desarrollo TecnológicoCuernavacaMexico
  2. 2.CIICAp. Universidad Autónoma del Estado de MorelosCuernavacaMéxico

Personalised recommendations