Towards Standards-Based Processing of Digital Elevation Models for Grid Computing through Web Processing Service (WPS)

  • Sandra Lanig
  • Arne Schilling
  • Beate Stollberg
  • Alexander Zipf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5073)


Digital Elevation Models (DEM) and 3D spatial data plays an important role in typical earth science applications. Numerous simulations, e.g. flood modeling, and spatial analysis, requires very exact terrain data. During the acquisition of these data, for an example by means of laserscanning, very large data sets results due to the high measuring point density (up to four points per square meter). Current classical Geo-Information-System (GIS) software cannot manage the demand of processing and analyzing these massive raw terrain data. A lack of computing power may appear. There is a need for sophisticated data processing techniques. For this purpose the use of Grid Computing is a good choice to accomplish high processing performance and storage capacity. To process these massive raw geodata we develop a range of terrain Web Processing Services (WPS) which are made available as Grid services.


WPS SDI Grid Computing OGC Web services GIS processing DEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, A., Radhakrishna, M., Joshi, R.C.: Geometry-based Mapping and Rendering of Vector Data over LOD Phototextured 3D Terrain Models. In: WSCG 2006 - The 14th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen -Bory, Czech Republic, January 30 – February 3 (2006)Google Scholar
  2. 2.
    Coors, V., Rossignac, J.: Delphi: geometry-based connectivity prediction in triangle mesh compression. The Visual Computer, International Journal of Computer Graphics 20(8-9) (2004)Google Scholar
  3. 3.
    Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Maguire, T., Snelling, D., Tuecke, S.: From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring & Evolution (2004),
  4. 4.
    Heckbert, P.S., Garland, M.: Survey of Polygonal Simplification Algorithms. In: Multiresolution Surface Modeling Course, SIGGRAPH 1997, Los Angeles, USA (1997)Google Scholar
  5. 5.
    Hoppe, H.: Smooth view-dependent level-of-detail control and its application to terrain rendering. In: IEEE Visualization, October 1998, pp. 35–42 (1998)Google Scholar
  6. 6.
    Heier, C., Kiehle, C.: Geodatenverarbeitung im Internet - der OGC Web Processing Service. GIS 2005 6, 39–43 (2005)Google Scholar
  7. 7.
    Global Grid Froum (GGF),
  8. 8.
    The Globus Alliance,
  9. 9.
    Kiehle, C., Greve, K., Heier, C.: Standardized Geoprocessing – Taking Spatial Data Infrastructures one step further. In: Proceedings of the 9th AGILE International Conference on Geographic Information Science, Visegrád, Hungary (2006)Google Scholar
  10. 10.
    Kohout, Josef: Delaunay Triangulation in Parallel and Distributed Environment. PhD Thesis, University of West Bohemia, Pillsen, Czech Republic (2005)Google Scholar
  11. 11.
    Kolbe, T.H., Gröger, G., Plümer, L.: CityGML – Interoperable Access to 3D City Models. In: Proceedings of the Int. Symposium on Geoinformation for Disaster Management, Delft, The Netherlands, March 21-23 (2005)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    OGC: Web Processing Service. OGC Standard, Document Reference, Number 05-007r7, Version 1.0.0 (2007)Google Scholar
  15. 15.
    Lindstrom, P., Pascucci, V.: Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization. IEEE Transactions on Visualization and Computer Graphics 8(3), 239–254 (2002)CrossRefGoogle Scholar
  16. 16.
    Schilling, A., Basanow, J., Zipf, A.: Vector Based Mapping Of Polygons On Irregular Terrain Meshes For Web 3D Map Services. In: 3rd International Conference on Web Information Systems and Technologies (WEBIST), Barcelona, Spain (March 2007)Google Scholar
  17. 17.
    Schilling, A., Zipf, A.: Generation of VRML City Models for Focus Based Tour Animations - Integration, Modeling and Presentation of Heterogeneous Geo-Data Sources. In: Web3D Conference, Saint Malo, France, 9-12.03.2003 (2002)Google Scholar
  18. 18.
    Schroeder, W.J.: A Topology Modifying Progressive Decimation Algorithm. In: IEEE Proceedings Visualization 1997, pp. 205–221 (1997)Google Scholar
  19. 19.
    Sotomayour, B., Childers, L.: Globus Toolkit 4: Programming Java services. Morgan Kaufmann, San Francisco (2006)Google Scholar
  20. 20.
    Stollberg, B., Zipf, A.: OGC Web Processing Service Interface for Web Service Orchestration - Aggregating Geo-processing Services in a Bomb Threat Scenario. In: Ware, J.M., Taylor, G.E. (eds.) W2GIS 2007. LNCS, vol. 4857. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Wartell, Z., Kang, E., Wasilewski, T., Ribarsky, W., Faust, N.: Rendering Vector Data over Global, Multi-resolution 3D Terrain. In: Proceedings of Joint EUROGRAPHICS – IEEE TCV Symposium on Visualization, Grenoble, France, May 26-28, 2003, pp. 213–222 (2003)Google Scholar
  22. 22.
    Weiser, A., Neis, P., Zipf, A.: Orchestrierung von OGC Web Diensten im Katastrophenmanagement - am Beispiel eines Emergency Route Service auf Basis der OpenLS Spezifikation. In: GIS - Zeitschrift für Geoinformatik. 09/2006, pp. 35–41 (2006)Google Scholar
  23. 23.
    Weiser, A., Zipf, A.: Web Service Orchestration (WSO) of OGC Web Services (OWS) for Disaster Management. In: Joined CIG/ISPRS Conference on Geomatics for Disaster and Risk Management, Toronto. Kanada, 23.-25.05.2007 (2007)Google Scholar
  24. 24.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sandra Lanig
    • 1
  • Arne Schilling
    • 1
  • Beate Stollberg
    • 1
  • Alexander Zipf
    • 1
  1. 1.Department of Geography, Chair of CartographyUniversity of BonnBonnGermany

Personalised recommendations