Transversal Waves in Nonlinear Signorini Model

  • Carlo Cattani
  • Ekaterina Nosova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5072)

Abstract

Propagation of waves in hyperelastic composite materials is studied by using a nonlinear model based on Signorini potential. The nonlinear wave solution, excited by an ingoing transversal pulse, and the corresponding nonlinear effects are discussed and simulated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achenbach, J.D.: Waves Propagation in Elastic Solids. North-Holland, Amsterdam (1973)Google Scholar
  2. 2.
    Cattani, C.: The wavelets based technique in the dispersive wave propagation. International Applied Mechanics 39(4), 132–140 (2003)CrossRefGoogle Scholar
  3. 3.
    Cattani, C.: Multiscale Analysis of Wave Propagation in Composite Materials. Mathematical Modelling and Analysis 8(4), 267–282 (2003a)MATHMathSciNetGoogle Scholar
  4. 4.
    Cattani, C.: Harmonic Wavelets towards Solution of Nonlinear PDE. Computers and Mathematics with Applications 50(8-9), 1191–1210 (2005)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cattani, C.: On the scale dependence of the structural models for nanocomposite materials. Materiale Plastice 4, 135–142 (2007)Google Scholar
  6. 6.
    Cattani, C.: Waves in nonlinear Signorini structural model. In: Krakow, P., van Albada, D., et al. (eds.) ICCS 2008, Part II. LNCS, vol. 4488. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructure. Series on Advances in Mathematics for Applied Sciences, vol. 74. World Scientific, Singapore (2007)MATHGoogle Scholar
  8. 8.
    Drumheller, D.S.: Introduction to Wave Propagation in Nonlinear Fluids and Solids. Cambridge University Press, Cambridge (1998)Google Scholar
  9. 9.
    Germain, P.: Progressive waves. Jahrbuch Deutsch. Gesellschaft Luft Raumfahrt, Koln, 11–30 (1972)Google Scholar
  10. 10.
    Hudson, J.A.: The Excitation and Propagation of Elastic Waves. Cambridge University Press, Cambridge (1980)MATHGoogle Scholar
  11. 11.
    Rushchitsky, J.J., Cattani, C.: Similarities and distinctions in description of evolution of quadratically nonlinear hyperelastic plane waves by Murnaghan and Signorini potentials. International Applied Mechanics 42(9), 41–58 (2006)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Toma, C.: An Extension of the Notion of Observability at Filtering and Sampling Devices. In: Proceedings of the International Symposium on Signals, Circuits and Systems Iasi SCS Romania, pp. 233–236 (2001)Google Scholar
  13. 13.
    Toma, G.: Practical Test Functions Generated by Computer Algorithms. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 576–584. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlo Cattani
    • 1
  • Ekaterina Nosova
    • 2
  1. 1.diFarma, University of SalernoFisciano (SA)Italy
  2. 2.Dept. of MathematicsUniversity of SalernoFisciano (SA)Italy

Personalised recommendations