Advertisement

From Microscopic to Macroscopic Modeling of Supersonic Seeded Atomic Beam

  • Savino Longo
  • Paola Diomede
  • Annarita Laricchiuta
  • Gianpiero Colonna
  • Mario Capitelli
  • Daniela Ascenzi
  • Mario Scotoni
  • Paolo Tosi
  • Fernando Pirani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5072)

Abstract

Two new techniques have been applied to the study of seeded atomic beams produced by expansion in vacuum. The first technique is a calculation of gas kinetic cross sections based on an improved Lennard-Jones potential. The second one is a new version of the Test Particle Monte Carlo method, able to treat at the same time the flow of majority and seed species in a quasi-continuum flow. Gas kinetic and transport cross sections for He/He and He/Ar scattering are calculated and discussed in comparison with available data. The momentum transfer cross section is included in the Monte Carlo model. Monte Carlo calculations are produced for macroscopic quantities in axial symmetric geometry and discussed in comparison with those obtained assuming rigid sphere scattering. The perspectives opened by the present procedure to seeded molecular beam investigations and to ion reaction studies are also shortly discussed.

Keywords

Molecular beams interaction potential cross sections Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scoles, G.: Atomic and molecular beam methods. Oxford University Press, Oxford (1988)Google Scholar
  2. 2.
    Bird, G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)Google Scholar
  3. 3.
    Mukherjee, J., Gantayet, L.M., Ahmad, S.A.: Free jet expansion of atomic beam: simulation studies of some parameters. J. Phys. D: Appl. Phys. 33, 1386–1392 (2000)CrossRefGoogle Scholar
  4. 4.
    Pirani, F., Albertí, M., Castro, A., Teixidor, M.M., Cappelletti, D.: Atom–bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394, 37–44 (2004)CrossRefGoogle Scholar
  5. 5.
    Pirani, F., Maciel, G., Cappelletti, D., Aquilanti, V.: Experimental benchmarks and phenomenology of interatomic forces: open-shell and electronic anisotropy effects. Int. Rev. Phys. Chem. 25, 165–199 (2006)CrossRefGoogle Scholar
  6. 6.
    Capitelli, M., Cappelletti, D., Colonna, G., Gorse, C., Laricchiuta, A., Liuti, G., Longo, S., Pirani, F.: On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chemical Physics 338, 62–68 (2007)CrossRefGoogle Scholar
  7. 7.
    Tang, K.T., Toennies, J.P.: The van der Waals potentials between all the rare gas atoms from He to Rn. J. Chem. Phys. 118, 4976–4983 (2003)CrossRefGoogle Scholar
  8. 8.
    Tang, K.T., Toennies, J.P., Yiu, C.L.: Accurate Analytical He-He van der Waals Potential Based on Perturbation Theory. Phys. Rev. Letters 74, 1546–1549 (1995)CrossRefGoogle Scholar
  9. 9.
    Danielson, L.J., Kiel, M.: Interatomic potentials for HeAr, HeKr, and HeXe from multiproperty fits. J. Chem. Phys. 88, 851–870 (1988)CrossRefGoogle Scholar
  10. 10.
    Longo, S., Diomede, P.: Monte Carlo modeling of gas phase ion transport under thermal gradients and external fields. Eur. Phys. J. Appl. Phys. 26, 177–185 (2004)CrossRefGoogle Scholar
  11. 11.
    Gombosi, T.I.: Gaskinetic Theory. Cambridge Univ. Press, Cambridge (1994)Google Scholar
  12. 12.
    Diomede, P., Longo S.: (work in preparation)Google Scholar
  13. 13.
    Pirani, F., Cappelletti, D., Bartolomei, M., Aquilanti, V., Scotoni, M., Vescovi, M., Ascenzi, D., Bassi, D.: Orientation of Benzene in Supersonic Expansions, Probed by IR-Laser Absorption and by Molecular Beam Scattering. Phys. Rev. Lett. 86, 5035–5038 (2001)CrossRefGoogle Scholar
  14. 14.
    Laricchiuta, A., Bruno, D., Catalfamo, C., Pirani, F., Colonna, G., Diomede, P., Pagano, D., Gorse, C., Longo, S., Celiberto, R., Capitelli, M.: Transport Properties of High-Temperature Mars-Atmosphere Components. In: AIAA Proceedings, 39th Thermophysics Conference, Miami (FL), pp. 2007–4043 (2007)Google Scholar
  15. 15.
    Ascenzi, D., Cont, N., Guella, G., Franceschi, P., Tosi, P.: New Insights into the Reaction Mechanisms of Phenylium Ions with Benzene. J. Phys. Chem. A 111, 12513–12523 (2007); Ascenzi, D., Bassi, D., Franceschi, P., Hadjar, O., Tosi, P., Di Stefano, M., Rosi, M., Sgamellotti, A.: Reactivity of C10H7+ and C10D7+ with H2 and D2. J. Chem. Phys. 121, 6728–6737 (2004)Google Scholar
  16. 16.
    Hurly, J.J., Mehl, J.B.: 4He Thermophysical Properties: New Ab Initio Calculations. J. Res. Natl. Inst. Stand. Technol. 112, 75–94 (2007)Google Scholar
  17. 17.
    Aubreton, J., Elchinger, M.F., Rat, V., Fauchais, P.: Two-temperature transport coefficients in argon–helium thermal plasmas. J. Phys. D 37, 34–41 (2004)CrossRefGoogle Scholar
  18. 18.
    Aziz, R.A., Janzen, A.R., Moldover, M.R.: Ab Initio Calculations for Helium: A Standard for Transport Property Measurements. Phys. Rev. Letters 74, 1586–1589 (1995)CrossRefGoogle Scholar
  19. 19.
    Lieberman, M.A., Lichtenberg, A.J.: Principles of Plasma Discharges and Materials Processing. Wiley, Chichester (2005)Google Scholar
  20. 20.
    Cappelletti, D., Pirani, F., Scotoni, M., Demarchi, G., Vattuone, L., Gerbi, A., Rocca, M.: Cooling and alignment of ethylene molecules in supersonic seeded expansions: diagnostic and application to gas phase and surface scattering experiments. Eur. Phys. J. D 38, 121–127 (2006)CrossRefGoogle Scholar
  21. 21.
    Gerbi, A., Savio, L., Vattuone, L., Pirani, F., Cappelletti, D., Rocca, M.: Role of rotational alignment in dissociative chemisorption and oxidation: O-2 on bare and CO-precovered Pd(100). Angew. Chem. Int. Ed. 45, 6655–6658 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Savino Longo
    • 1
    • 2
  • Paola Diomede
    • 1
  • Annarita Laricchiuta
    • 2
  • Gianpiero Colonna
    • 2
  • Mario Capitelli
    • 1
    • 2
  • Daniela Ascenzi
    • 3
  • Mario Scotoni
    • 3
  • Paolo Tosi
    • 3
  • Fernando Pirani
    • 4
  1. 1.Chemistry DepartmentBari UniversityBariItaly
  2. 2.CNR-IMIP BariBariItaly
  3. 3.Physics DepartmentTrento UniversityTrentoItaly
  4. 4.Chemistry DepartmentPerugia UniversityPerugiaItaly

Personalised recommendations