Advertisement

A Comparison of the Isotope Effect for the N + N2 Reaction Calculated on Two Potential Energy Surfaces

  • Sergio Rampino
  • Dimitris Skouteris
  • Antonio Laganà
  • Ernesto Garcia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5072)

Abstract

The atom-diatom time independent quantum reactive scattering program ABC implemented on the COMPCHEM section of the EGEE computing Grid has been used to compute isotope effects for the nitrogen atom - nitrogen molecule reactions. Exact J = 0 quantum scattering calculations were performed for both the 14N + 28N2 and 14N + 30N2 reactions on two different potential energy surfaces. Related reaction thresholds, reactive resonances and product distributions are discussed. J-shifting thermal rate coefficients are also calculated for a comparison with the experiment.

Keywords

reactive scattering quantum dynamics and kinetics nitrogen exchange reaction reactive resonances isotope effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armenise, I., Capitelli, M., Celiberto, R., Colonna, G., Gorse, C., Laganà, A.: The effect of N+N2 collisions on the non-equilibrium vibrational distributions of nitrogen under reentry conditions. Chem. Phys. Lett. 227, 157–163 (1994)CrossRefGoogle Scholar
  2. 2.
    Armenise, I., Capitelli, M., Garcia, E., Gorse, C., Laganà, A., Longo, S.: Deactivation dynamics of vibrationally excited nitrogen molecules by nitrogen atoms. Effects on non-equilibrium vibrational distribution and dissociation rates of nitrogen under electrical discharges. Chem. Phys. Lett. 200, 597–604 (1992)CrossRefGoogle Scholar
  3. 3.
    Skouteris, D., Castillo, J.F., Manolopoulos, D.E.: ABC: a quantum reactive scattering program. Comp. Phys. Comm. 133, 128–135 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Rampino, S.: Spacecraft reentry modeling: exact quantum calculations for the reaction N + N2. Theoretical Chemistry and Computational Modeling European Master Thesis, Università di Perugia (2007)Google Scholar
  5. 5.
    Enabling Grids for E-Science in Europe, http://www.eu-egee.org
  6. 6.
    Laganà, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry Virtual Organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Schatz, G.C.: Quantum reactive scattering using hyperspherical coordinates: results for H + H2 and Cl + HCl. Chem. Phys. Lett. 150, 92–98 (1988)CrossRefGoogle Scholar
  8. 8.
    Laganà, A., Garcia, E., Ciccarelli, L.: Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms. J. Phys. Chem. 91, 312–314 (1987)CrossRefGoogle Scholar
  9. 9.
    Petrongolo, C.: MRD-CI ground state geometry and vertical spectrum of N3. J. Mol. Struct. 175, 215–220 (1988)Google Scholar
  10. 10.
    Petrongolo, C.: MRD-CI quartet potential surfaces for the collinear reactions N (\(^4S_\mathrm{u}\)) + N2 (\(X^1\Sigma_\mathrm{g}^+\), \(A^3\Sigma_\mathrm{u}^+\), and \(B^3\Pi_\mathrm{g}\)). J. Mol. Struct (Teochem.) 202, 135–142 (1989)CrossRefGoogle Scholar
  11. 11.
    Garcia, E., Laganà, A.: The largest angle generalization of the rotating bond order potential: the H + H2 and N + N2 reactions. J. Chem. Phys. 103, 5410–5416 (1995)CrossRefGoogle Scholar
  12. 12.
    Laganà, A.: A rotating bond order formulation of the atom diatom potential energy surface. J. Chem. Phys. 95, 2216–2217 (1991)CrossRefGoogle Scholar
  13. 13.
    Laganà, A., Ferraro, G., Garcia, E., Gervasi, O., Ottavi, A.: Potential energy representations in the bond order space. Chem. Phys. 168, 341–348 (1992)CrossRefGoogle Scholar
  14. 14.
    Garcia, E., Laganà, A.: Effect of varying the transition state geometry on N + N2 vibrational deexcitation rate coefficients. J. Phys. Chem. A 101, 4734–4740 (1997)CrossRefGoogle Scholar
  15. 15.
    Wang, D., Stallcop, J.R., Huo, W.M., Dateo, C.E., Schwenke, D.W., Partridge, H.: Quantal study of the exchange reaction for N + N2 using an ab initio potential energy surface. J. Chem. Phys. 118, 2186–2189 (2003)CrossRefGoogle Scholar
  16. 16.
    Garcia, E., Saracibar, A., Gómez Carrasco, S., Laganà, A.: Modeling the global potential energy surface of the N + N2 reaction from ab initio data. Phys. Chem. Chem. Phys. (accepted)Google Scholar
  17. 17.
    Werner, J.J., Knowles, P.J., Almlof, J., Amos, R.D., Berinng, A., Cooper, D.L., Deegan, M.J.O., Dobbyn, A.J., Eckert, F., Elbert, S.T., Hampel, C., Lindh, R., Lloyd, A.W., Meyer, W., Nicklass, A., Peterson, K., Pitzer, R., Stone, A.J., Taylor, P.R., Mura, M.E., Pulay, P., Schutz, M., Stoll, H., Thorsteinsson, T.: MOLPRO is a package of ab initio programsGoogle Scholar
  18. 18.
    Wang, D., Huo, W.M., Dateo, C.E., Schwenke, D.W., Stallcop, J.R.: Reactive resonances in the N + N2 exchange reaction. Chem. Phys. Lett. 379, 132–138 (2003)CrossRefGoogle Scholar
  19. 19.
    Bowman, J.M.: Reduced dimensionality theory of quantum reactive scattering. J. Phys. Chem. 95, 4960–4968 (1991)CrossRefGoogle Scholar
  20. 20.
    Bowman, J.M.: Approximate time independent methods for polyatomic reactions. Lect. Notes in Chem., vol. 75, pp. 101–114 (2000)Google Scholar
  21. 21.
    Back, R.A., Mui, J.Y.P.: The reactions of active nitrogen with N15O and N\(^{15}_2\). J. Phys. Chem. 66, 1362–1364 (1962)CrossRefGoogle Scholar
  22. 22.
    Bar-Nun, A., Lifshitz, A.: Kinetics of the homogeneous exchange reaction: 14 − 14N2 + 15 − 15N2 → 2 14 − 15N2. Single-pulse shock-tube studies. J. Chem. Phys. 47, 2878–2888 (1967)CrossRefGoogle Scholar
  23. 23.
    Lyon, R.: Search for the N-N2 exchange reaction. Can. J. Chem. 50, 1433–1437 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sergio Rampino
    • 1
  • Dimitris Skouteris
    • 1
  • Antonio Laganà
    • 1
  • Ernesto Garcia
    • 2
  1. 1.Dipartimento di ChimicaUniversità di PerugiaPerugiaItaly
  2. 2.Departamento de Quimica FisicaUniversidad del Pais VascoVitoriaSpain

Personalised recommendations