Advertisement

A Web-Based Autonomous Weather Monitoring System of the Town of Palermo and Its Utilization for Temperature Nowcasting

  • Giorgio Beccali
  • Maurizio Cellura
  • Simona Culotta
  • Valerio Lo Brano
  • Antonino Marvuglia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5072)

Abstract

Weather data are crucial to correctly design buildings and their heating and cooling systems and to assess their energy performances. In the intensely urbanized towns the effect of climatic parameters is further emphasized by the “urban heat island” phenomenon, known as the increase in the air temperature of urban areas, compared to the conditions measured in the extra-urban areas. The analysis of the heat island needs detailed local climate data which can be collected only by a dedicated weather monitoring system. The Department of Energy and Environmental Researches of the University of Palermo has built up a weather monitoring system that works 24 hours per day and makes data available in real-time at the web site: www.dream.unipa.it/meteo. The data collected by the system have been used to implement a NNARMAX model aiming to obtain short-term forecasts of the temperature and map them over the monitored area.

Keywords

web-based monitoring artificial neural networks NNARMAX MLP temperature nowcasting weather 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beccali, M., Cellura, M., Lo Brano, V., Marvuglia, A.: Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area. Renewable & Sustainable Energy Reviews (2007) ISSN: 1364-0321. doi:10.1016/j.rser.2007.04.010Google Scholar
  2. 2.
    Ardente, F., Beccali, G., Cellura, M., Lo Brano, V.: Life cycle assessment of a solar thermal collector: sensitivity analysis, energy and environmental balances. Renewable Energy 30(2), 109–130 (2005)CrossRefGoogle Scholar
  3. 3.
    UNI 10349: Heating and cooling of buildings. Climatic data (1994)Google Scholar
  4. 4.
    Lopes, C., Adnot, J., Santamouris, M., Klitsikas, N., Alvarez, S., Sanchez, F.: Managing the Growth of the Demand for Cooling in Urban Areas and Mitigating the Urban Heat Island Effect. In: European Council for an Energy Efficient Economy (ECEEE) congress, Mandelieu, June 11-16, 2001, vol. II (2001)Google Scholar
  5. 5.
    Kolokotroni, M., Giannitsaris, I., Watkins, R.: The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy 80(4), 383–392 (2006)CrossRefGoogle Scholar
  6. 6.
    Wong, N.H., Yu, C.: Study of green areas and urban heat island in a tropical city. Habitat International 29(3), 547–558 (2005)CrossRefGoogle Scholar
  7. 7.
    Norgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Neural networks for modelling and control of dynamic systems. Springer, London (2000)Google Scholar
  8. 8.
    World Meteorological Organization: 1961–1990 global climate normals (CLINO). CD-ROM version 1.0, November 1998. Produced by National Climatic Data, Center, NOAA, USA (1998)Google Scholar
  9. 9.
    Bagnouls, F., Gaussen, H.: Saison sèche et indice xérothermique. Docum. pour les Cartes des Prod. Végét. Série: Généralité (in French) 1, 1–49 (1953)Google Scholar
  10. 10.
    Micela, G., Granata, L., Iuliano, V.: Due secoli di pioggia a Palermo; Report of the Astronomic Observatory of Palermo G.S. Vaiana, University of Palermo (in Italian) (2001) ISBN 99-87905-2-09Google Scholar
  11. 11.
    Sözen, A., Arcaklıoglu, E., Özalp, M., Kanıt, E.G.: Use of artificial neural networks for mapping of solar potential in Turkey. Applied Energy 77, 273–286 (2004)CrossRefGoogle Scholar
  12. 12.
    Mihalakakou, G., Santamoruris, M., Tsangrassoulis, A.: On the energy consumption in residential buildings. Energy and Buildings 34, 727–736 (2002)CrossRefGoogle Scholar
  13. 13.
    Ben-Nakhi, A.E., Mahmoud, M.A.: Cooling load prediction for buildings using general regression neural networks. Energy Conversion & Management 45, 2127–2141 (2004)CrossRefGoogle Scholar
  14. 14.
    Yang, I.H., Kim, W.K.: Prediction of the time of room air temperature descending for heating systems in buildings. Building and Environment 39, 19–29 (2004)CrossRefGoogle Scholar
  15. 15.
    American Society of Civil Engineers: Outdoor Human Comfort and Its Assessment: The State of the Art (2004) ISBN-10: 0784406847Google Scholar
  16. 16.
    Chen, S., Billings, S.A.: Neural Networks for Nonlinear Dynamic System Modelling and Identification. International Journal Control 56(2), 319–346 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12), 1691–1724 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ljung, L.: System Identification – Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River (1999)Google Scholar
  19. 19.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis, Forecasting and Control, 3rd edn. Prentice Hall, Englewood Clifs (1994)zbMATHGoogle Scholar
  20. 20.
    Norgard, M.: Neural Network Based System Identification TOOLBOX, version 2 (2000), http://www.iau.dtu.dk/research/control/nnsysid.html
  21. 21.
    Hagan, M.T., Menhaj, M.: Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)CrossRefGoogle Scholar
  22. 22.
    González, P., Zamarreño, J.M.: A short-term temperature forecaster based on a state space neural network. Engineering Applications of Artificial Intelligence 15, 459–464 (2002)CrossRefGoogle Scholar
  23. 23.
    Abdel-Aal, R.E.: Hourly temperature forecasting using abductive networks. Engineering Applications of Artificial Intelligence 17, 543–556 (2004)CrossRefGoogle Scholar
  24. 24.
    Lanza, P.N., Cosme, J.M.: A short-term temperature forecaster based on a novel radial basis functions neural network. International Journal of Neural Networks 11, 71–77 (2001)Google Scholar
  25. 25.
    Hippert, H.S., Pedreira, C.E., Souza, R.C.: Combining neural networks and ARIMA models for hourly temperature forecast. In: IEEE-INNS-ENNS International Joint Conference on Neural Networks, Como (Italy), July 24-27, 2000, vol. 4, pp. 414–419 (2000)Google Scholar
  26. 26.
    Galouchko, V.: 3DField (2002), http://field.hypermart.net

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Giorgio Beccali
    • 1
  • Maurizio Cellura
    • 1
  • Simona Culotta
    • 1
  • Valerio Lo Brano
    • 1
  • Antonino Marvuglia
    • 1
  1. 1.Dipartimento di Ricerche Energetiche ed Ambientali (DREAM)Università degli Studi di PalermoPalermoItaly

Personalised recommendations