Field Sampling from a Segmented Image

  • Pravesh Debba
  • Alfred Stein
  • Freek D. van der Meer
  • Emmanuel John M. Carranza
  • Arko Lucieer
Conference paper

DOI: 10.1007/978-3-540-69839-5_55

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5072)
Cite this paper as:
Debba P., Stein A., van der Meer F.D., Carranza E.J.M., Lucieer A. (2008) Field Sampling from a Segmented Image. In: Gervasi O., Murgante B., Laganà A., Taniar D., Mun Y., Gavrilova M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg

Abstract

This paper presents a statistical method for deriving the optimal prospective field sampling scheme on a remote sensing image to represent different categories in the field. The iterated conditional modes algorithm (ICM) is used for segmentation followed by simulated annealing within each category. Derived field sampling points are more intense in heterogenous segments. This method is applied to airborne hyperspectral data from an agricultural field. The optimized sampling scheme shows superiority to simple random sampling and rectangular grid sampling in estimating common vegetation indices and is thus more representative of the whole study area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pravesh Debba
    • 1
    • 2
  • Alfred Stein
    • 3
  • Freek D. van der Meer
    • 3
  • Emmanuel John M. Carranza
    • 3
  • Arko Lucieer
    • 4
  1. 1.Council for Scientific and Industrial Research (CSIR)Logistics and Quantitative Methods, CSIR Built EnvironmentSouth Africa
  2. 2.College of Science, Engineering and Technology, Department of StatisticsUniversity of South AfricaPretoriaSouth Africa
  3. 3.International Institute for Geo-Information Science and Earth Observation (ITC)EnschedeThe Netherlands
  4. 4.School of Geography & Environmental Studies, Center for Spatial Information Science (CenSIS)University of TasmaniaTasmaniaAustralia

Personalised recommendations