Advertisement

Sampling Optimization Trade-Offs for Long-Term Monitoring of Gamma Dose Rates

  • S. J. Melles
  • G. B. M. Heuvelink
  • C. J. W. Twenhöfel
  • U. Stöhlker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5072)

Abstract

This paper applies a recently developed optimization method to examine the design of networks that monitor radiation under routine conditions. Annual gamma dose rates were modelled by combining regression with interpolation of the regression residuals using spatially exhaustive predictors and an anisotropic variogram of the residuals. Locations of monitoring stations were optimized by minimizing the spatially averaged regression kriging standard deviation. Results suggest that the current network design is near optimal in terms of interpolation error in predicted gamma dose rates. When the network was thinned to fewer stations, spatial optimization was more effective at reducing the interpolation error. Given that some EU countries are considering reducing station density in border regions, the analysis reported here may be useful in guiding which stations can be removed.

Keywords

interpolation terrestrial radiation gamma radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaauboer, R.O., Smetsers, R.C.G.M.: Variations in Outdoor Radiation Levels in the Netherlands. PhD thesis. University of Groningen, Groningen (1996)Google Scholar
  2. 2.
    Bossew, P., De Cort, M., Dubois, G., Stöhlker, U., Tollefsen, T., Wätjen, U.: AIRDOS: Evaluation of Existing Standards of Measurement of Ambient Dose Rate; and of Sampling, Sample Preparation and Measurement for Estimating Radioactivity Levels in Air. Technical report, JRC ref. No 21894-2004-04 A1CO ISP BE, European Joint Research Commission (2007)Google Scholar
  3. 3.
    Brus, D.J., Heuvelink, G.B.M.: Optimization of Sample Patterns for Universal Kriging of Environmental Variables. Geoderma 138, 86–95 (2007)CrossRefGoogle Scholar
  4. 4.
    Chang, N.-B., Ning, S.-K., Chen, J.-C.: Multicriteria Relocation Analysis of an Off-site Radioactive Monitoring Network for a Nuclear Power Plant. J. Environ. Manag. 38, 197–217 (2006)CrossRefGoogle Scholar
  5. 5.
    Chilés, J.-P., Delfiner, P.: Geostatistics: Modelling Spatial Uncertainty. Section 3.4.3. John Wiley & Sons Inc., New York (1999)Google Scholar
  6. 6.
    Christensen, R.: Linear Models for Multivariate, Time, and Spatial Data. Springer, New York (1990)Google Scholar
  7. 7.
    Dormann, C.F., McPherson, J.M., Arajo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Khn, I., Ohlemller, R., Peres-Neto, P.R., Reineking, B., Schrder, B., Schurr, F.M., Wilson, R.: Methods to Account for Spatial Autocorrelation in the Analysis of Species Distributional Data: A Review. Ecography 30, 609–628 (2007)CrossRefGoogle Scholar
  8. 8.
    European Soil Bureau.: The European Soil Database, version 2.0. CD-ROM. Ipra, Italy (2003)Google Scholar
  9. 9.
    Furukawa, M., Zhang, S., Zhao, S., Jiang, Z., Nei, L., Chung, W. Matsumoto, M. Tokonami, S.: Variation of Cosmic-ray Intensity with Altitude in Asia: Results for Japan, China, and Korea. Technical report, National Institute of Radiological Sciences, Japan (1999), http://www.nirs.go.jp/report/nene/H10/5/072.html#fig23
  10. 10.
    Hengl, T., Heuvelink, G.B.M., Rossiter, D.G.: About Regression-Kriging: From Equations to Case Studies. Comput. Geo. 33, 1301–1315 (2007)CrossRefGoogle Scholar
  11. 11.
    Heuvelink, G.B., Brus, D.J., de Gruijter, J.J.: Optimization of Sample Configurations for Digital Mapping of Soil Properties with Universal Kriging. In: Lagacherie, P., McBratney, A., Voltz, M. (eds.) Digital Soil Mapping: An Introductory Perspective, pp. 1–17. Elsevier, Oxford (2006)Google Scholar
  12. 12.
    Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, New York (1989)Google Scholar
  13. 13.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lowder, W.M., O’Brien, K.: Cosmic-ray Dose Rates in the Atmosphere: Technical report HASL-254, US Atomic Energy Commission, New York (1972)Google Scholar
  15. 15.
    Murith, C., Gurtner, A.: Measures in situ et Irradiation Extreme. In: BAG, Environmental Radioactivity and Radiation Exposure in Switzerland. Swiss Federal Office of Public Health, Berne (in French) (1994)Google Scholar
  16. 16.
    New, M., Lister, D., Hulme, M., Makin, I.: A High-resolution Data Set of Surface Climate Over Global Land Areas. Climate Res. 21, 1–25 (2000)CrossRefGoogle Scholar
  17. 17.
    Odeh, I., McBratney, A., Chittleborough, D.: Further Results on Prediction of Soil Properties from Terrain Attributes: Heterotopic Cokriging and Regression-kriging. Geoderma 67, 215–226 (1995)CrossRefGoogle Scholar
  18. 18.
    Pebesma, E.J.: Multivariable Geostatistics in S: the Gstat Package. Comput. Geo. 30, 683–691 (2004)CrossRefGoogle Scholar
  19. 19.
    R Development Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2007), http://www.R-project.org ISBN 3-900051-07-0
  20. 20.
    Searle, S.R.: Linear Models. John Wiley & Sons Inc., New York (1997)zbMATHGoogle Scholar
  21. 21.
    Szegvary, T., Conen, F., Stöhlker, U., Dubois, G., Bossew, P., de Vries, G.: Mapping Terrestrial γ-dose Rate in Europe Based on Routine Monitoring Data. Radiat. Meas. 42, 1561–1572 (2007a)Google Scholar
  22. 22.
    Szegvary, T., Leuenberger, M.C., Conen, F.: Predicting Terrestrial 222Rn Flux Using Gamma Dose Rate as a Proxy. Atmos. Chem. Phys. 7, 2789–2795 (2007b)CrossRefGoogle Scholar
  23. 23.
    Twenhöfel, C.J.W., de Hoog, C., van Beynen, A.P., van Lunenburg, P.A., Slagt, G.J.E., Tax, R.B., van Westerlaak, P.J.M., Aldenkamp, F.J.: Operation of the Dutch 3rd Generation National Radioactivity Monitoring Network. In: Dubois, G. (ed.) Automatic Mapping Algorithms for Routine and Emergency Monitoring Data: Spatial Interpolation Comparison 2004. European Communities, Luxembourg (2005)Google Scholar
  24. 24.
    U.S. Geological Survey, National Mapping Division, EROS Data Center.: USGS 30-second Global Elevation Data, GTOP030 (1996)Google Scholar
  25. 25.
    van Groenigen, J.W., Siderius, W., Stein, A.: Constrained Optimisation of Soil Sampling for Minimisation of the Kriging Variance. Geoderma, 239–259 (2004)Google Scholar
  26. 26.
    Wissmann, F., Rupp, A., Stöhlker, U.: Characterization of Dose Rate Instruments for Environmental Radiation Monitoring. Z. Kerntech. 4, 193–198 (2007)Google Scholar
  27. 27.
    Zhang, L., Gove, J.H., Heath, L.S.: Spatial Residual Analysis of Six Modelling Techniques. Ecol. Model. 186, 154–177 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • S. J. Melles
    • 1
  • G. B. M. Heuvelink
    • 1
  • C. J. W. Twenhöfel
    • 2
  • U. Stöhlker
    • 3
  1. 1.Environmental Sciences GroupWageningen University and Research Centre (WUR)WageningenThe Netherlands
  2. 2.National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
  3. 3.Bundesamt für Strahlenschutz (BfS)SalzgitterGermany

Personalised recommendations